
筑牢我国大数据管理的安全防线(2)_数据分析师
从我国情况看,当前仍处于大数据发展的起步阶段,大数据在面临传统安全风险的同时,还面临着数据能否自有掌控、处理能否自主实现、应用能否规范有序、安全能否有所保障等新的安全风险。针对这些问题,应尽快从强化数据立法、加快自主自控、注重显隐价值保护三方面筑牢我国大数据安全管理的防线,实现以安全保发展、以发展促安全的良好局面。
强化数据安全立法工作,防止“大而无序”。目前,我国大数据安全的理论和实践还不够成熟,应用的规范和技术标准体系还不完善,包括大数据在内的信息安全相关法律制度还没有建立。公共应用与专业应用、安全应用与非安全应用之间的统筹不够,层出不穷的新模式、新应用缺乏底线约束和规则规范,特别是对数据安全带来巨大隐患、对产业生态造成巨大破坏的新模式还缺乏有效制约。防止管理应用“大而无序”,一要尽快从法理层面提出国家数据主权。尽快组织制定国家层面的数据信息安全法律,积极参与国际相关标准、规则制定,规范国家数据空间主体的义务和权利,防止发达国家利用技术先行优势侵犯其他国家数据主权。二要加快大数据安全法制建设。借鉴各类安全立法与司法经验,完善数据安全相关法律法规制定,对数据的获取、使用、应用等责任和权利进行明确的法律界定,对非法监控行为制定处罚标准,构筑民事、行政与刑事责任三位一体的数据安全法律框架,提升数据空间的法制治理能力。
尽快实现对关键装备、核心领域与人才的自主自控,防止“大而无力”。当前,我国大部分数据的产生、获取、处理和存储仍然依靠国外的软硬件设施,大量数据使用别人造的“车”、行驶在别人造的“路”上、停靠在别人建的“库”里,很容易被监控窃取。例如,西方依靠各种互联网渠道及网络窃听技术,控制了大量的互联网数据流量,“数字鸿沟”正在演化成为“数据鸿沟”。防止自主自控“大而无力”,一要加快自主研发关键装备。对技术成熟的国产设备,建议在国计民生、国家安全等关键领域推广使用,加快国产化替代步伐。对尚不成熟的设备领域,要集中力量和资源进行重点攻关。二要尽快切入核心领域。对于一时无法完全用国产设备替代的关键核心领域,坚持以应用促发展,在使用中完善,在完善中替代。三要加大人才培养力度。整体规划我国大数据安全人才的培养、引进和使用,形成学业、职业、产业三位一体的培育体系。
高度重视大数据显隐价值保护,防止“大而无安”。目前,我国关键基础设施领域仍采用传统数据安全理念和技术手段,被动应对多、主动防护少,许多领域面临着平时被控、战时被瘫的风险。比如美国的“棱镜门”事件,折射出我国在数据安全防护上还存在很多漏洞。防止风险防护“大而无安”,一要坚持显性与隐性价值保护并重。对能够预测到的隐性价值提前采取措施加以保护,慎重对待涉及国家经济安全、国防安全等关键敏感领域大数据的应用和开放。二要加强分类分级管理。建立大数据安全等级保护制度,制定涉及个人隐私、商业秘密和政府保密数据采集使用和保护的规章制度,对国防、交通、能源、金融、通讯、政府公务、医疗、物流、个人等重要信息系统采取相应等级的保护措施。三要建立军民联防的大数据安全管理防护体系。建立军地合作、攻防一体的数据安全应用和应急管理响应体系;注重“平战结合”,做到平时数据建设应用有序,战时数据控制优先保证国防安全的需要。总之,要以国家核心安全需要为牵引,多措并举实现大数据安全保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10