
面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。从我国情况看,当前仍处于大数据发展的起步阶段,大数据在面临传统安全风险的同时,还面临着数据能否自有掌控、处理能否自主实现、应用能否规范有序、安全能否有所保障等新的安全风险。
习近平总书记在中央网络安全和信息化领导小组第一次会议上强调指出,没有网络安全就没有国家安全,没有信息化就没有现代化。近年来,随着信息化进入大数据时代,国民经济、国防建设等社会各行各业乃至公民个人的状态信息和行为轨迹正在广泛以数据方式记录下来。国家在网络空间的数据主权,已经成为继陆海空天之后又一新的主权领域。面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。
一、大数据时代下的数据安全特征
大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。大数据之“大”,不仅在于海量数据的“大规模”,更重要的体现在:通过涉及各行各业乃至个体各类数据源产生数据轨迹的“大覆盖”,推动各类同构、异构数据的“大融合”,提升分析数据内在规律和发展趋势的“大智慧”,实现从数据到信息、到显隐价值挖掘的“大应用”。与传统信息安全不同,大数据安全具有如下新的特征:
据管理的风险增加。传统信息系统好像是封闭的花园,往往依靠关卡式、闸门式的“围墙”进行安全防护。随着大数据时代数据的“雾化”、泛化,传统封闭独立的“围墙”被海量分散的、流动性极强的数据洪流所冲破。数据来源庞杂带来了数据采集的安全风险,数据种类众多带来了数据的整合与存储安全风险,外部数据需求和用户隐私保护带来了数据审计和安全发布风险。
数据获取方式更为隐蔽。大数据时代,遍布全球各个角落的传感器等电子设备正在实时获取用户的行为轨迹,名目多样的各类云服务也在不经意间诱使用户主动上传信息,数据的攫取越来越公开化、在线化。与此同时,大数据时代的数据获取方式更为隐蔽,往往通过大量数据关联获取价值。比如通过资金流、物流、消费流、能源流轨迹的数据分析,即可洞察一个区域的经济运行态势。
数据的价值显隐并存、动态变化。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。今天看似杂乱无章、毫无规律的数据,明天可能会显现出超出想象的价值。因此,与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。
数据安全的影响空前广泛。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。数据安全既影响商业、金融等经济安全,也可能涉及文化意识形态等精神领域,甚至可能会激发社会动荡、改变战争形态、影响国家安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10