京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人都开始关注数据分析,这是因为数据分析行业十分有前景。而学习数据分析需要学习数据挖掘,其中学习数据挖掘需要掌握很多的知识。我们在这篇文章中给大家介绍一下数据分析以及数据挖掘需要学习的知识,希望能够给大家带来帮助。
需要告诉大家的是,我们学习有关数据的知识的时候,一定离不开统计知识的学习,当然Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。这些都是学习数据挖掘的基本功。
而数据挖掘中的朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
可以挖掘的数据类型有很多,具体就是关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。
那么什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
关于数据挖掘需要学习的知识我们就给大家介绍到这里了,相信大家看了这篇文章以后对数据挖掘有了一个新的看法。其实数据挖掘的学习并非一日两日就能够完成,只有我们坚持学习,我们才能够有所收获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12