京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们都知道,人工智能的核心是机器学习,而机器学习的核心是深度学习,所以说,深度学习是值得我们去了解去学习的学科。在这篇文章中我们给大家介绍更多人工智能需要的知识——深度学习知识,希望能够帮助大家理解深度学习的知识。
1.深度学习的概念
什么是深度学习呢?简单地说,深度学习就是把计算机要学习的东西看成一大堆数据, 把这些数据丢进一个复杂的、包含多个层级的数据处理网络,也就是深度神经网络,然后检查经过这个网络处理得到的结果数据是不是符合要求——如果符合,就保留这个网络作为目标模型, 如果不符合,就一次次地、锲而不舍地调整网络的参数设置,直到输出满足要求为止。而我们要做的,只是告诉计算机输入和预期的结果,让他自己找规律。当然,新的输入进入时,我们也要保证已经调节好的模型不变化。也就是说,深度学习算法是有计算机自己凑出来的模型。这样反倒更加实用。更能够从本质上解决问题。
2.深度学习的前提条件是什么呢?
进行深度学习的两个前提条件就是必须有强大的运算能力和高质量的大数据。当然,搭建好的模型只有通过各种类型数据的检验,才能变得越来越接近真实的世界,值得一提的是,大数据正是为这些模型提供了源源不断的数据。深度学习、大规模计算、大数据都逐渐步入成熟的它们三位一体,当然,在大数据发挥作用的同时,人工智能研发者也一定不要忘了,大数据的应用必然带来个人隐私保护方面的挑战。为了给你推送精准的广告信息,就要收集你的购买习惯、个人喜好等数据,这些数据中往往包含了许多个人隐私;为了获得以人类基因为基础的医疗大数据来改进疾病的诊疗,就要通过某种渠道收集尽可能多的人类基因样本,而这些数据一旦保管不善,就可能为提供基因样本的个人带来巨大风险;为了建立智能城市,就要监控和收集每个人、每辆车的出行信息,但是我们还是需要注意这些数据的安全问题。这样也是对社会负责。
在这篇文章中我们给大家介绍了深度学习的概念以及进行深度学习的两个条件。从以上内容中,我们可以清晰地了解到深度学习在机器学习乃至人工智能的重要性。所以,在人工智能工作的时候我们还是需要掌握好深度学习的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28