京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们在做数据挖掘工作或学习数据挖掘课程的时候需要注意很多的事情,在这篇文章中我们就从数据转换成文本、数据装箱、Naive Bayes算法、聚类分析模型这四个方面讲解需要注意的地方。希望这篇文章能够帮助到大家。
1.数字转换文本
我们在进行将数字转换为文本的时候,通常执行编码是为了简化数据输入或者节省数据库的存储空间,不过此编码可能导致值的性质和意义不明确。此外,由于离散值以数字形式存储,当我们在应用程序之间移动数据时,可能会遇到数据类型转换错误,这些值可能被计算或被视为连续值。若要避免此类问题,应该在开始数据挖掘之前,将数值标签转换回离散的文本标签。
2.数字装箱
在进行对数字进行装箱的时候,从原则来说,所有数值都是无限的并因此是连续的,但在我们对信息进行建模时,可能会发现将可用值离散化或装箱可能更有效。我们可以通过许多方式将数据装箱,第一种方式就是指定数目有限的存储桶并且让算法对存储桶中的值进行排序。这是我们通过创建某些分组集合,自己预先对值进行分组。使用此方法,这样常常会丧失值的真正分布,但范围更易于用户读取。让算法确定存储桶的最佳数目以及值的分布。这是大多数工具中的默认行为,但我们可以在数据挖掘工具栏向导中重写这些默认行为。而某些在外接程序中使用的算法需要特定的数据类型或内容类型才能创建模型。这样就需要我们对算法的使用多加重视。
3.Naive Bayes模型,
一般来说,Naive Bayes 算法不能使用连续列作为输入。这意味着,我们必须对数字装箱,或者如果值足够少,可以按离散值处理。当然此类模型也不能预测连续值。因此,如果要预测连续数字,应先将值装箱到有意义的范围中。如果不确定合适的范围,可以使用聚类分析算法确定数据中的数字聚类。基于此算法使用向导时,向导会对连续列装箱。
4.聚类分析模型
在聚类分析模型中,聚类分析工具也不能使用连续数字,但这两个工具都会自动对数字列装箱。这两种工具都向您提供选项以便可以选择结果中输出类别的数目,但是,如果想要控制对单独列中的值进行分组的方式,则应该通过所需分组来创建新列。
在这篇文章中我们给大家介绍了很多数据挖掘中需要注意的地方,具体就是数据转换成文本、数据装箱、Naive Bayes算法、聚类分析模型的相关知识。当然,这些都是在数据挖掘工作中需要注意的事情,我们在做数据挖掘工作或学习过程中一定要重视这些细节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31