京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现在很多人都是比较关注机器学习的,而大家在进行机器学习的使用或者学习中都会或多或少出现一点错误,这就使得很多人无法正确理解机器学习知识,那么大家是否知道机器学习中常见的错误都有哪些呢?下面我们就给大家介绍一下关于机器学习的常见错误。
机器学习中的常见错误有两个,第一就是很多人过于依赖算法,这是为什么呢?因为机器学习系统的核心是模型和算法,基于模型和算法的可扩展性也是机器学习系统的核心竞争力之一。虽然说机器学习的核心是算法和模型,但是这并不代表系统中的每个环节都一定要用算法来处理,完全摒弃非算法的、甚至手工的方法。很多机器学习系统中都会有一些核心的基础数据,不管这些数据是多还是少,大家的第一反应往往是用算法去处理这些数据,但是有的时候简单直接的方式才是真正有效的方法。但是真的是这样的吗?
我们在构建机器学习的时候,需要得到一份干净的数据,那么什么是干净的数据呢?干净的数据就是没有噪音的数据,为了达到去除噪音的目的,有人尝试过很多方法,简单的高级的都试过,都有效果,但都达不到我们要的效果。不过经过ROI衡量,我们决定人工来处理这些数据,用这种方式进行处理数据能够获得更好的结果。所以说,我们不是不提倡使用算法,我们提倡的是要根据具体的问题选择合适的方法。过于依赖某一种方法会有局限性。这样就能够很好的解决很多问题,所以说,即使是在机器学习系统这种整体比较高大上的系统中,也要具体问题具体分析,需要我们换方式做的,我们就不能使用算法了。
机器学习中常见的错误还有团队不够“全栈”。就目前而言,全栈工程师是近年来很火爆的一个概念,在机器学习这样一个复杂系统中,每个人都做到全栈未必现实,但是有一条基本要求应该努力做到,就是团队级别的全栈。而机器学习系统的团队一般主要由算法工程师和系统工程师组成,往往会忽略其他角色,比较典型的就是掌握前端技能的工程师。前端技能在机器学习系统中有很重要的作用,当然,技术全栈只是解决问题的手段,更重要的是能关注全部系统的全局性思维。
在这篇文章中我们给大家介绍了关于机器学习中容易出现的错误,第一就是过于依赖算法,第二就是团队的全栈水平不够。所以说,我们要想更好的学习机器学习就一定要避免这两个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31