京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家介绍了关于机器学习的新技术的一部分,具体就是深度学习和强化学习,这两种新兴的机器学习技术给我们带来了不一样的效果,在这篇文章中我们给大家介绍一下新型机器学习技术的剩余部分的内容,大家快快学起来吧。
首先我们说一下迁移学习,其实迁移学习的目的是把为其他任务训练好的模型迁移到新的学习任务中,帮助新任务解决训练样本不足等技术挑战。之所以可以这样做,是因为很多学习任务之间存在相关性,因此从一个任务中总结出来的知识可以对解决另外一个任务有所帮助。迁移学习目前是机器学习的研究热点之一,还有很大的发展空间。
然后我们说一下对抗学习,其实在传统的深度生成模型存在一个潜在问题,那句是由于最大化概率似然,模型更倾向于生成偏极端的数据,影响生成的效果。对抗学习利用对抗性行为来加强模型的稳定性,提高数据生成的效果。在最近的几年里,利用对抗学习思想进行无监督学习的生成对抗网络被成功应用到图像、语音、文本等领域,成为了无监督学习的重要技术之一。现在对抗学习是被大家十分关注的学习方式。
而对偶学习是一种新的学习范式,其基本思想是利用机器学习任务之间的对偶属性获得更有效的反馈/正则化,引导、加强学习过程,因此降低深度学习对大规模人工标注数据的依赖。对偶学习的思想已经被应用到机器学习很多问题里,包括机器翻译、图像风格转换、问题回答和生成、图像分类和生成、文本分类和生成、图像转文本和文本转图像等等。
下面我们说一下分布式学习,其实分布式技术是机器学习技术的加速器,能够显著提高机器学习的训练效率、进一步增大其应用范围。当分布式思维遇到机器学习,不应只局限在对串行算法进行多机并行以及底层实现方面的技术,我们更应该基于对机器学习的完整理解,将分布式和机器学习更加紧密地结合在一起。
最后我们给大家说一下元学习,元学习是这几年来机器学习领域的一个新的研究热点。那么什么是元学习呢?元学习就是学会如何学习,重点是对学习本身的理解和适应,而不仅仅是完成某个特定的学习任务。也就是说,一个元学习器需要能够评估自己的学习方法,并根据特定的学习任务对自己的学习方法进行调整。
在这篇文章中我们给大家介绍了关于新型机器学习的剩余一部分的内容,通过对这些知识的了解相信大家能够懂得机器学习的相关知识,希望这篇文章能够更好的帮助大家理解机器学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31