京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面的文章中我们给大家介绍了很多关于机器学习的算法,这些算法都是能够帮助大家更好地理解机器学习,而机器学习的算法各种各样,要想好好地使用这些算法就需要对这些算法一个比较透彻的了解。我们在这篇文章中接着给大家介绍一下机器学习中涉及到的算法的最后一部分内容。
首先说一下聚类算法,聚类算法是指对一组目标进行分类,属于同一组的目标被划分在一组中,与其他组目标相比,同一组目标更加彼此相似。聚类算法的例子有很多,比如说K-均值(k-Means)、k-Medians 算法、Expectation Maximi 封层 ation (EM)、最大期望算法(EM)、分层集群,聚类算法的优点就是让数据变得有意义。缺点就是结果难以解读,针对不寻常的数据组,结果可能无用。
然后我们给大家说一下基于实例的算法,基于实例的算法是这样学习算法,不是明确归纳,而是将新的问题例子与训练过程中见过的例子进行对比,这些见过的例子就在存储器中。之所以叫基于实例的算法是因为它直接从训练实例中建构出假设。这意味这,假设的复杂度能随着数据的增长而变化:最糟的情况是,假设是一个训练项目列表,分类一个单独新实例计算复杂度为 O(n)。这种算法有很多的例子,比如说K 最近邻、学习向量量化、自组织映射、局部加权学习。而这种算法的优点就是算法简单、结果易于解读。缺点就是内存使用非常高、计算成本高、不可能用于高维特征空间。
接着我们给大家说一下贝叶斯算法,贝叶斯方法是指明确应用了贝叶斯定理来解决如分类和回归等问题的方法。贝叶斯算法的例子有很多,具体就是朴素贝叶斯、高斯朴素贝叶斯、多项式朴素贝叶斯、平均一致依赖估计器、贝叶斯信念网络贝叶斯网络。而贝叶斯算法的优点是快速、易于训练、给出了它们所需的资源能带来良好的表现。缺点就是如果输入变量是相关的,则会出现问题。
下面我们给大家介绍一下关联规则学习算法、而关联规则学习方法能够提取出对数据中的变量之间的关系的最佳解释。具体例子局Apriori 算法、Eclat 算法、FP-growth。
图模型或概率图模型是一种概率模型,一个图可以通过其表示随机变量之间的条件依赖结构。具体的例子就是贝叶斯网络、马尔可夫随机域、链图、祖先图。优点就是模型清晰,能被直观地理解。缺点就是确定其依赖的拓扑很困难,有时候也很模糊。
关于机器学习涉及到的算法我们给大家介绍完了。还是那句话,我们要想学好人工智能就必须重视机器学习,而要想学好机器学习就需要掌握这些算法,对这些算法的优点缺点有一个透彻的了解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01