京公网安备 11010802034615号
经营许可证编号:京B2-20210330
其实在我们的生活中有很多技术都是利用到了机器学习,比如说推荐系统、智能图片美化和聊天机器人等,这些技术在机器学习和数据处理算法的帮助下已经被大家广泛使用。在这篇文章中我们给大家介绍一下机器学习中的深度学习以及支持向量机和降维算法的相关知识,希望这篇文章能够更好地帮助大家理解机器学习。
首先我们说一下深度学习,深度学习是人工神经网络的最新分支,它受益于当代硬件的快速发展。众多研究者目前的方向主要集中于构建更大、更复杂的神经网络,目前有许多方法正在聚焦半监督学习问题,其中用于训练的大数据集只包含很少的标记。深度学习的例子有很多,比如说深玻耳兹曼机(Deep Boltzmann Machine,DBM)、Deep Belief Networks(DBN)、卷积神经网络(CNN)、Stacked Auto-Encoders。而深度学习的优点和缺点是一样的,就是,在语音、语义、视觉、各类游戏(如围棋)的任务中表现极好,算法可以快速调整,并且能够适应新的问题。缺点就是需要大量数据进行训练、训练要求很高的硬件配置、模型处于「黑箱状态」,难以理解内部机制、元参数(Metaparameter)与网络拓扑选择困难。
下面我们给大家介绍一下支持向量机,当给定一组训练事例,其中每个事例都属于两个类别中的一个,支持向量机(SVM)训练算法可以在被输入新的事例后将其分类到两个类别中的一个,使自身成为非概率二进制线性分类器。而支持向量机模型将训练事例表示为空间中的点,它们被映射到一幅图中,由一条明确的、尽可能宽的间隔分开以区分两个类别。随后,新的示例会被映射到同一空间中,并基于它们落在间隔的哪一侧来预测它属于的类别。支持向量机的优点就是在非线性可分问题上表现优秀。缺点就是非常难以训练,并且很难解释。
而降维算法是机器学习中一个有名的算法,这种算法和集簇方法类似,降维追求并利用数据的内在结构,目的在于使用较少的信息总结或描述数据。而这一算法可用于可视化高维数据或简化接下来可用于监督学习中的数据。许多这样的方法可针对分类和回归的使用进行调整。降维算法的案例有很多,比如说主成分分析、主成分回归、偏最小二乘回归、Sammon 映射、多维尺度变换、投影寻踪、线性判别分析、混合判别分析、二次判别分析、灵活判别分析。降维算法的优点就是可处理大规模数据集以及无需在数据上进行假设。缺点就是难以搞定非线性数据、难以理解结果的意义。
在这篇文章中我们给大家介绍了很多关于机器学习的算法,具体包括深度学习、支持向量机以及降维算法。学习这些知识是个挺枯燥的过程,但坚持下来你就会享受到成果的喜悦。因此,一定要加油喔,功夫不负有心人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31