
我们都知道,要想让工作效率提高,有一个好的工具是很有必要的,这就是老祖宗所说的“工欲善其事,必先利其器”。这句话适用于任何工作,当然大数据也不例外,就目前而言,大数据越来越受到大家的重视,也逐渐成为各个行业研究的重点,如果想搞好大数据,那么就必须好好选择工具。当然,大数据行业因为数据量巨大的特点,传统的工具已经难以应付,所以我们要选择一个合适的工具,那么大数据常用的软件工具有哪些呢?下面我们就给大家介绍一下大数据的工具。
我们在进行大数据分析之前,需要数据挖掘,而对于数据挖掘来说,由于数据挖掘在大数据行业中的重要地位,所以使用的软件工具更加强调机器学习,常用的软件工具就是SPSS Modeler。SPSS Modeler主要为商业挖掘提供机器学习的算法,同时,其数据预处理和结果辅助分析方面也相当方便,这一点尤其适合商业环境下的快速挖掘,但是它的处理能力并不是很强,一旦面对过大的数据规模,它就很难使用。
如果对于传统分析和商业统计来说,常用的软件工具有Excel、SPSS和SAS。Excel是一个电子表格软件,相信很多人都在工作和学习的过程中,都使用过这款软件。Excel方便好用,容易操作,并且功能多,为我们提供了很多的函数计算方法,因此被广泛的使用,但它只适合做简单的统计,一旦数据量过大,Excel将不能满足要求。SPSS和SAS都是商业统计才会用到的软件,为我们提供了经典的统计分析处理,能让我们更好的处理商业问题。同时,SPSS更简单,但功能相对也较少,而SAS的功能就会更加丰富一点。
如果在大数据可视化这个领域中,最常用目前也是最优秀的软件莫过于TableAU了。TableAU的主要优势就是它支持多种的大数据源,还拥有较多的可视化图表类型,并且操作简单,容易上手,非常适合研究员使用。不过它并不提供机器学习算法的支持,因此不难替代数据挖掘的软件工具。关系分析。关系分析是大数据环境下的一个新的分析热点,其最常用的是一款可视化的轻量工具——Gephi。Gephi能够解决网络分析的许多需求,功能强大,并且容易学习,因此很受大家的欢迎。但由于它是由Java编写的,导致处理性能并不是那么优秀,在处理大规模数据的时候显得力不从心,所以也是有着自己的局限性。
关于大数据行业常用的软件工具我们就给大家介绍到这里了,其实文中介绍的这些工具的功能都是比较强大的,虽然有着不少的局限性,但由于大数据行业分工比较明确,所以也能使用。希望这些工具能够帮助大家提高工作效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10