京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家详细介绍了很多有关数据可视化的知识,通过这些知识,我们可以看出,虽然数据可视化是一个比较简单的事情,但是有很多的细节需要我们去注意,只有这样我们才能够做好数据可视化的工作。那么要想做好数据可视化还需要注意什么呢?我们现在就给大家详细的介绍一下这些知识。
数据可视化需要注意的就是排版,排版布局增强信息可视化的叙事性。这就需要我们重视一下排版布局四大基本原则。第一,就是对比,如果两个项不完全相同,就应当使之不同,而且应当是截然不同。第二就是重复,设计的某些方面在整个作品中重复。第三就对齐,任何元素都不能在页面上随意安放。每 项都应当与页面上的某个内容存在某种视觉联系。第四就是亲密性,将相关的项组织在 起,使它们的物理位置相互靠近相关的项将被看作凝聚为一体的一个组。而在这样小的空间里有多个单独的元素,读者的眼睛要停下来多次才能看清这张名片上的所有信息,而且容易使读者对信息产生歧义。当然,把相关的元素分为一组,通过对齐、对比等手段突出,用重复和亲密性建立信息间的联系,那么,现在这个名片不论从理解上还是视觉上看都很有条理,而且这样一来,它还能更清楚的表达信息。
其次就是注意动态动态增加信息可视化的视觉体验,在信息可视化的视觉表达中,动态将相互分离的各种信息传播形式有机地融合在 起,进行有节奏的信息处理、传输和实现。通过造型和色彩的运动,满足受众的视觉感受,同时将信息内容更加深刻地传达给受众,使整个信息传达的过程更加轻松。而对于数据可视化有诸多工具,而这些工具功能都十分强大,但对于非专业可视化而又经常与图表打交道的职场人士来说,一款轻便易学而又实用的可视化软件则显得十分重要。
如果需要展现的数据结构不是特别复杂,而又要把数据展现的绚丽多彩,而且具有交互性,而使用工具可以使用水晶易表这一个工具,水晶易表是一个十分好用的工具,具体来说有三个优点,第一就是基于矢量的SWF图形格式,跨平台流畅播放,空间占用小,可将分析结果直接嵌入到PowerPoint、PDF文件、Outlook和Web上。第二就是简单易学易上手,无需额外编程。水晶报表基于excel,短期内就可精通水晶易表绝大部分常用功能了,并且能够举一反三。第三就是美观实用,多个实用性控件和主题可设计出夺人眼球的报表。演示性的、交互性的、动态的趋势分析型报表能满足各种交互功能。
通过这篇文章我们可以看出数据可视化的重要性了吧?数据可视化是数据分析工作中最后的步骤,当然也是不容忽视的,所以我们要想做好数据分析工作,就从注重数据可视化开始吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31