
数据可视化是数据分析中最后一个步骤,我们做的所有数据分析工作需要把工作内容呈献给领导或者给客户,所以这就需要我们重视数据可视化。那么我们如何做好数据可视化的工作呢?我们就在这篇文章中给大家介绍一下数据可视化的技巧知识,希望这篇文章能够更好地帮助大家理解数据可视化。
首先我们给大家介绍一下什么是数据可视化?对于研究大规模数据人员而言,数据可视化指综合运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像、视频或动画,并允许用户对数据进行交互分析的理论、方法和技术。两种定义其实是从广义和狭义两个不同层面去理解,它们既不是对立的,也没有严格区分,仅是针对于不同的业务场景。
那么我们为什么要做为什么要进行数据可视化?无论是哪种职业和应用场景,数据可视化都有 个共同的目的,即明确、有效的传递信息。图形能将不可见现象转化为可见的图形符号,并直截了当和清晰直观的表达出来。因此,数据可视化能够加深人对于数据的理解和记忆。其实任何形式的数据可视化由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖、充实、高效、美感四个特征。
那么我们如何实现数据可视化?一般来说数据可视化包括数据的采集、分析、治理、管理、挖掘在内的 系列复杂数据处理,然后由设计师设计一种表现形式,而由工程师创建对应的可视化算法及技术实现手段。这就需要重视色彩提升信息可视化的视觉效果。在信息可视化通过造型元素明确传达信息及叙述的基础上,把握好视觉元素中色彩的运用,使图形变得更加生动,信息表达得更加明确。而色彩可以帮助人们对信息进行深入分类,丰富作品的表现形式,并且给受众带来视觉效果上的享受。
那么关于数据可视化的色彩需要注意什么呢?第一就是需要注意色相、饱和度、明度。这里说的色相就是大家所说的红色、绿色等色彩。而饱和度是指颜色的纯度。明度标识颜色的明暗程度。其次就是注意冷色和暖色,经验告诉我们,暖色比冷色看起来占用面积大。因此,即使红色和蓝色占用相同的面积,前者还是会从视觉上压倒后者。暖色看起来距离近,而冷色则看起来越来越远。最后就是四原色和三原色。青、品红、黄和黑是打印机用来完成四色印刷的四种墨水,这四种颜色按一定比例调制便可得到各种颜色。
我们在这篇文章中给大家介绍很多数据可视化的相关技巧,通过这篇文章我们可以更好地理解数据可视化的作用。当然,数据可视化的技巧一篇文章不可能完全体现出来,我们在后面的文章中继续为大家介绍数据可视化的相关技巧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10