京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家介绍了学习数据挖掘的第一条路线,第一条路线讲述的是如何学习机器学习的第一部分,主要是数据挖掘方面,懂得了这些我们才能够进行下一步的工作,那么学习数据挖掘的第二条路线是什么呢?我们在这篇文章中给大家介绍一下相关的知识。
首先给大家说一下数据挖掘的技术过程,数据挖掘的技术过程有很多,比如数据清理(消除噪音或不一致数据)、数据集成(多种数据源可以组合在一起)、数据选择(从数据库中提取与分析任务相关的数据)、数据变换(数据变换或统一成适合挖掘的形式;如,通过汇总或聚集操作)、数据挖掘(基本步骤,使用智能方法提取数据模式)、模式评估(根据某种兴趣度度量,识别提供知识的真正有趣的模式)、知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。
然后给大家说一下数据挖掘的第二条路线,就是K-means,然后是EM,然后是朴素贝叶斯,然后是贝叶斯网络,然后是隐马尔科夫模型(基本模型,前向算法,维特比算法,前向-后向算法),然后是卡尔曼滤波。这条线路所涉及的基本都是那些各种画来画去的图模型,一个学术名词是 PGM。这条线的思路和第一条是截然不同的!贝叶斯网络、HMM(隐马尔科夫模型),K-means 和 EM 具有与生俱来的联系,认识到这一点才能说明你真正读懂了它们。而EM算法要在HMM的模型训练中用到,所以我们要先学EM才能深入学习HMM。所以尽管在EM中看不到那种画来画去的图模型,但还把它放在了这条线路中,这也就是原因所在。朴素贝叶斯里面的很多内容在,贝叶斯网络和HMM里都会用到,类似贝叶斯定理,先验和后验概率,边缘分布等等(主要是概念性的)。最后,卡尔曼滤波可以作为HMM的一直深入或者后续扩展。尽管很多有的书里没把它看做是一种机器学习算法(或许那些作者认为它应该是信号处理中的内容),但是它也确实可以被看成是一种机器学习技术。很多科学家也深刻地揭示了它与HMM之间的紧密联系。
关于数据挖掘的学习路线我们就给大家介绍到这里了,想必大家看了这篇文章以后已经知道了数据挖掘怎么学习了吧?大家在进行学习数据挖掘的时候还是要根据自己的进度进行学习,这样才能够得出一个极好的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28