京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人看到了数据挖掘的前景,就开始学习数据挖掘,但数据挖掘是一个交叉性的学科,需要我们找到一个合适的学习方法才能够做好数据挖掘的学习,在这篇文章中我们就给大家介绍一下数据挖掘的相关知识。
首先,在正式学习之前我们所需要的预备知识(主要是数学)应该包括:微积分(偏导数、梯度等等)、概率论与数理统计(比如极大似然估计、中央极限定理、大数法则等等)、最优化方法(比如梯度下降、牛顿-拉普什方法、变分法(欧拉-拉格朗日方程)、凸优化等等)。如果我们对其中的某些名词感到陌生,那么就说明我们尚不具备深入开展数据挖掘算法学习的能力。你会发现到处都是门槛,很难继续进行下去。所以我们还是要多下功夫进行学习这些知识。
首先我们给大家说一下数据挖掘的学习方法,数据挖掘的学习方法有两种,我们给大家说一下第一种,就是从基于普通最小二乘法简单线性回归开始学习,然后学习线性回归中的新进展(岭回归和LASSO回归),然后学习(此处可以插入Bagging和AdaBoost的内容),然后学习 Logistic回归,然后学习支持向量机(SVM),然后学习感知机学习,然后学习神经网络(初学者可先主要关注BP算法),然后进行深度学习。
我们把它们归为一条线路,因为所有这些算法都是围绕着数据挖掘展开的,如果你抓住这条线索,不断探索下去,就算是抓住它们之间的线索了。而基于普通最小二乘的线性回归是统计中一种有着非常悠久历史的方法,它的使用甚至可以追溯到高斯的时代。但是它对数据有诸多要求,例如特征之间不能有多重共线性,而且岭回归和LASSO就是对这些问题的修正。
如果我们沿着这一条路线学完的时候,其实我们已经攻克机器学习的一半了,当然,在这个过程中,我们一定时刻清楚自己后一个算法与前一个的联系在哪里,只有这样我们才能够学习数据挖掘更加深刻。
从这篇文章中我们给大家介绍了数据挖掘学习的相关内容,想必这些知识能够给大家带来实质性的帮助,我们在进行学习数据挖掘的时候不只是依靠于这些,剩余的内容我们在下一篇文章中继续给大家介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28