京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在前面的文章中我们给大家介绍了很多人们对于人工智能的误解,另外还有一些内容需要我们注意的是,了解人工智能除了需要有一定的知识储备以外还需要对人工智能有一定的判断能力,这样才能够加深对人工智能的了解,下面我们继续给大家说一下人们对人工智能存在的误解。
有的人认为我们永远不会创造出类似人类智慧的人工智能。其实并不是这样的,就目前而言,我们已经在一些游戏领域,如象棋与围棋、股市交易和谈话等创造出可以与人类智慧匹敌、甚至超过人类的计算机。而背后驱动的计算机和算法只会越来越好;因此,计算机赶超其他人类活动,将只是个时间问题。在人工智能领域工作的基本每个人都认为,机器将最终会替代我们自己。支持者和怀疑论者之间的唯一真正的区别只是时间框架问题。未来学家普遍认为机器替代人类可能会在几十年发生。
还有的人认为人工智能会有自觉的意识,其实这种想法不完全正确。关于机器智能的一个共同的假设是,它是自觉的有意识的,也就是说,它会像人类一样思考。更重要的是,但是现在我们还没有实现人工普遍智能,也就是说能够执行任何一项人类能够进行的智能任务,因为我们缺乏关于意识的完整科学理论知识体系。而人工智能的意识无疑是一个有趣和重要的主题,但还是有很多人不相信意识是匹敌人类水平的人工智能必要的部分,我们完全可以想像一个非常聪明的机器,缺乏一个或多个这种属性。最后,我们可以建立一个非常聪明的,但没有自我意识的,不能主观或有意识地体验世界的人工智能。沙纳汉说,将智慧和意识同时融合在一台机器里也是有可能的,但是,我们不应该忽视这样一个事实,即智慧和意识是两个不同的概念。只是因为一台机器通过图灵测试从而证实计算机和人类在智能上无区别,并不意味着它是有意识的。对我们来说,先进的人工智能可能会导致机器看起来是意识的假象,但是在自我自觉方面,它并不比一块岩石或计算器更能感知自我意识。
我们在这篇文章中给大家介绍了人们对于人工智能存在的误解,加上前面的文章中提到的内容我们已经给大家讨论了10个方面的误解,希望这篇文章能够帮助我们更好地了解人工智能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03