京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们不止一次地说,人们对人工智能片面或者不充分的了解使得人们对人工智能存在一些误解,其实这些想法都是正常的,不过当我们开始认真关注并学习人工智能知识的时候就会逐渐消除对人工智能的误解。下面我们继续给大家介绍一下人们对人工智能的误解。
有人认为人工智能将接手我们所有的工作,这是一个十分恐怖的事情,其实人工智能自动完成人类工作的能力与它摧毁人类的潜能是两回事。而技术的进步和未来的失业往往是密不可分的。思考人工智能在未来可能扮演的角色无可厚非,但是我们更应该关注的是后面几十年的问题。人工智能主要完成的还是大规模自动化的工作。毫无疑问,人工智能将彻底接管包括从工厂做工到上层的白领工作在内的许多现有的工作岗位。有专家预测,在美国有一半的工作岗位可能在不久的将来实现自动化。但这并不意味着我们不能适应这种巨变。通过人工智能将自己从纷杂的体力和脑力劳动中解放出来,这也是人们所希望的。
在接下来的几十年中,人工智能会摧毁许多工作,但是这是一件好事,例如,自动驾驶汽车可以取代卡车司机,这将减少运输成本,从而降低它的商品购买价格。而这些人将钱节省下来可以购买其他商品和服务,因而会创造新的工作。所以最终的结果可能是,人工智能会产生创造财富的新途径,而人类可以腾出来做其他事情。而在人工智能的进步将带动其他领域,尤其是制造业的发展。在未来,满足人类需求会变得更加容易,而不是更难。人工智能的出现会使得解放人们的双手。
接着我们就给大家说一下第八个误解,那就是来自人工智能的危险和机器人是一回事。这是一个特别常见的错误,如果超级人工智能真的想毁灭人类,它不会使用挥舞机关枪的机器人。它会使用更有效的手段,我们就给大家举个例子,比如释放生物瘟疫,或发动基于纳米技术的灾难。或者可以直接破坏掉大气层。人工智能是潜在的危险,并不因为它意味着机器人的未来,而是它将如何对世界展现它的存在。
我们在这篇文章中给大家介绍了两种人们对人工智能的误解。看了这篇文章以后,相信大家对于人工智能的误解已经消除了不少吧,希望这篇文章能够更好地帮助大家理解人工智能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03