京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们不止一次地说,人们对人工智能片面或者不充分的了解使得人们对人工智能存在一些误解,其实这些想法都是正常的,不过当我们开始认真关注并学习人工智能知识的时候就会逐渐消除对人工智能的误解。下面我们继续给大家介绍一下人们对人工智能的误解。
有人认为人工智能将接手我们所有的工作,这是一个十分恐怖的事情,其实人工智能自动完成人类工作的能力与它摧毁人类的潜能是两回事。而技术的进步和未来的失业往往是密不可分的。思考人工智能在未来可能扮演的角色无可厚非,但是我们更应该关注的是后面几十年的问题。人工智能主要完成的还是大规模自动化的工作。毫无疑问,人工智能将彻底接管包括从工厂做工到上层的白领工作在内的许多现有的工作岗位。有专家预测,在美国有一半的工作岗位可能在不久的将来实现自动化。但这并不意味着我们不能适应这种巨变。通过人工智能将自己从纷杂的体力和脑力劳动中解放出来,这也是人们所希望的。
在接下来的几十年中,人工智能会摧毁许多工作,但是这是一件好事,例如,自动驾驶汽车可以取代卡车司机,这将减少运输成本,从而降低它的商品购买价格。而这些人将钱节省下来可以购买其他商品和服务,因而会创造新的工作。所以最终的结果可能是,人工智能会产生创造财富的新途径,而人类可以腾出来做其他事情。而在人工智能的进步将带动其他领域,尤其是制造业的发展。在未来,满足人类需求会变得更加容易,而不是更难。人工智能的出现会使得解放人们的双手。
接着我们就给大家说一下第八个误解,那就是来自人工智能的危险和机器人是一回事。这是一个特别常见的错误,如果超级人工智能真的想毁灭人类,它不会使用挥舞机关枪的机器人。它会使用更有效的手段,我们就给大家举个例子,比如释放生物瘟疫,或发动基于纳米技术的灾难。或者可以直接破坏掉大气层。人工智能是潜在的危险,并不因为它意味着机器人的未来,而是它将如何对世界展现它的存在。
我们在这篇文章中给大家介绍了两种人们对人工智能的误解。看了这篇文章以后,相信大家对于人工智能的误解已经消除了不少吧,希望这篇文章能够更好地帮助大家理解人工智能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06