京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,人工智能是一个十分火爆的事物,当然人工智能的前景优渥,使得很多人都想学习人工智能,但是人工智能的学习是需要大家慎重考虑的,因为它不是一门说学就能立刻上手的学科。在这篇文章中我们给大家讲一讲学习人工智能的建议,希望能够给大家带来帮助。
首先,人工智能的门槛是比较高的,对学习者的要求还是比较高的,首先有一种人不适合学习人工智能,那就是没有自己目标的人不适合学人工智能,如果要学好人工智能一定要打好专业知识基础,学会独立思考,把知识和数据有效结合,去发展新的模式,找准自己的愿景,形成自己“人工智能”的研究方向。所以有自己目标的人更适合学这个专业。
在学习人工智能之前,不管我们将来想做出怎样的成绩,一定要记住四件事,那就是选择重要的选题,做出真正的东西,选择适合自己的研究组,钻研新方向。我们意识到了这些,才能更好地在领域内实现自己的价值,才是读人工智能专业学生应该做的事儿。如果你的目标里没有这些,不想创新,也不想做出有深度有创意的东西,那你也不适合读这个专业。
而对于学校里的学生的建议就是一定要把基础打牢,速成一些东西对长远发展并没有益处。如果想做深度学习方向,一定要对数学有很好的了解。另一方面,企业关注的是实际的能力,是解决问题的能力,所以在把基础打牢后,一定要锻炼动手能力,自己做一些项目,解决问题的能力也是重中之重。如果上大学的目标只是学好理论,死读书,不想动手实践,不去锻炼自己解决问题的能力,那也不合适读这个专业。
当然,人工智能作为一个领域广泛的学科,需要跨学科学习能力强的人,因为现阶段人工智能和事物相结合越来越重要,只有复合型人才,才能真正推动自己所在领域的发展。而有的人虽然学的是人工智能专业,可是如果不愿意跨学科学习,日后也无法走得长远,那还不如一开始就不要读这个专业。这样既浪费了时间,也得不到好处以及长远的发展。
在这篇文章中我们给想学习人工智能的朋友提供了一些建议,大家如果想要学习人工智能,一定要考虑好人工智能需要的条件自己是否能够接受或是否具备学习的这个能力,这样才能够做到对自己的人生负责,不在迷茫或渺茫的道路上浪费人生的青春。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03