京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现阶段人工智能是一个十分火热的事物,火热到什么地步呢?火热到很多高校都开始设立人工智能方面的专业和课程,并且加大力度培养人工智能人才,那么人工智能人才需要具备什么样的知识架构呢?人工智能人才需要学习什么知识呢?下面我们就给大家介绍一下这个内容。
首先,人工智能的学习需要高水平的人工智能人才,而对人工智能人才的要求就是需要数学基础好、计算/软件程序功底扎实、人工智能专业知识全面。首先,无论是在抽象建模还是模型算法分析设计环节,都需要依赖良好的数学基础,因为人工智能所面对的问题千变万化,这导致了其所涉及的数学工具种类多样。事实上,人工智能的核心领域,即机器学习是计算机科学中对数学基础要求最高的分支之一。所以人工智能对人才的有很多的要求。
其次就是复杂现实任务通常可以从多种角度进行抽象,而不同的抽象将导致巨大的差异。这就需要注意很多的问题,比如抽象出的问题是否可计算?从程序代码的角度是否易实现?从计算平台的角度是否便于高效处理?等等。要想回答一下这个问题就需要在算法分析、程序设计、计算系统方面具备扎实的基础。事实上,对一些现代大型人工智能程序而言,甚至连高维数组的存储顺序都需做到优化,这如果没有扎实的计算、软件程序功底显然是不行的。
最后,在我们解决现实的人工智能应用任务时,往往同时涉及多种人工智能专业知识,需有效进行融合发挥。因此,高水平的、能解决企业关键技术难题的人工智能人才,必须具备全面的人工智能专业知识。这些知识能够方便我们理解人工智能并能够朝着更好的方向发展。所以说,如果数学不好的同学那么就需要考虑考虑数据自己究竟是否适合这个专业。
在最后需要提醒大家的是,学习人工智能还是需要学习计算机、自动化、电子、软件等内容。人工智能所解决的问题都是充满不确定性的复杂问题,这就需要很高的处理事务的能力,如果我们不擅长处理事情,并且不适应随时随地出现的不确定性工作,那也不适合这个行业,就不建议大家学习这个专业,希望这篇文章能够给大家带来参考价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03