京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家介绍了数据挖掘工作中的选择数据需要注意的内容,选择数据中需要注意八点,只有做到了这八点我们才能够做好数据挖掘工作,我们在这篇文章中接着给大家说一下数据挖掘工作需要注意的其他内容。
在数据挖掘的关联模型中,需要的数据通常多得多,如果分析很多属性,千行数据都可能不够。如果数据集太大或太小,通过将行合为类别有时可以获得更好的结果。当然,如果数据集大小合理,应更注重数据质量而不是添加越来越多的数据。达到一定数据量后,会发现统计上有效的所有模式,添加更多数据不会提高其有效性。相反,添加更多数据,有时可能引入意外关联。
在离散数值与连续数值中,由于离散列包含数目有限的值。通常来说,文本通常被视为离散值。离散值有一些重要属性。如果将数字视为离散值,则它们之间不隐含任何顺序,这就无法对数字计算平均值或总和。电话区号就是离散数值数据,不会用来执行数学运算。离散值有时候称作类别值,因为您可以按离散值对一组数据进行分组,而对于按无限序列排列的数值,则不能按其对数据进行分组。如果值是明确分开并且不可能有小数值或小数值没有用时,您也可以确定将数字视为离散值。
而连续数值数据可包含无限个小数值。收入列即为连续属性列的示例。如果您指定某一列为数值,则该列中的每个值都必须是数值,只有 null 除外。请注意,在 Excel 中,可以考虑时间戳以及可转换为 SQL Server 数据类型的任何其他日期时间表示形式。如果将数字转换为分类变量的话,离散化对分析提供许多好处。好处之一是缩小了问题空间。另一好处是数字有时不适合表示结果。这就是数据离散化的原因。
而如果创建一个包含连续数据的挖掘模型,之后又希望将列视为离散的,则是不可能的。两个数据集必须以不同的方式处理,作为单独的挖掘结构在后端进行处理。如果不确定数据的正确处理方式,应创建单独的模型以不同方式处理数据。
这篇文章中我们给大家介绍了数据挖掘需要注意到地方,尤其是在离散数值以及连续数值中的选择,我们只有知道了这些数据的优点才能够更好地利用好这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03