京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行数据挖掘工作的时候,我们要针对数据分析的目的进行数据挖掘,这就需要我们重视数据挖掘工作的每一个步骤,如果数据挖掘工作做得好,那么数据分析工作也必然不差,那么在进行数据挖掘工作的时候需要注意什么问题呢?下面就有我们为大家解答一下这个问题。
很多人在开始数据挖掘时,都或多或少的有些疑问,那就是“我需要多少数据?”一般来说,刚接触数据挖掘的人通常会遇到与 Excel 数据有关的问题,如需要在列中一致地设置数据格式、清除缺失值或对数字装箱。对于数据挖掘工作,我们需要注意的第一点就是选择数据。
选择数据,就是选择分析数据可能是数据挖掘过程中最重要的部分,甚至比算法选择更重要。原因在于,数据挖掘通常不是由假设驱动,而是由数据驱动。数据挖掘可以接收数据并发现新关联,而不是提前选择和测试变量。数据的质量和数量可能会显著影响结果。而在选择数据的时候,都需要遵守规则。
这里说的规则具体来说有八条,第一条就是数据挖掘工作中获取尽可能干净的数据。第二条就是尝试任何模型之前执行数据事件探查。第三,需要先理解数据,然后才能发现其中的含义。第四,使用外接程序中的工具查找最大值和最小值、最常见的值和平均值。第五,填写缺失值。外接程序或者算法可提供用于输入缺失值的工具。第六,尽可能更正错误的数据。数据挖掘项目经常充当新数据质量方案的推动力。第七,尝试生成测试模型,通过这种方式查找数据问题。尝试将数据转换为不同格式,或尝试将数字存入桶。转换数据时,经常会出现模式。将数字置于合适的箱中,减少要分析的值的数量。第八,创建多个版本的数据,生成多个模型。有关如何选择、修改和检查数据的其他提示,请参阅数据挖掘准备清单。
数据挖掘工作中需要注意的事情有很多,由于篇幅原因我们就给大家介绍到这里了,在这一篇文章中我们给大家介绍了选择数据需要注意的事情,选择数据具体需要注意的就是上面提到的八点内容,注意到这些就能够做好数据挖掘工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08