京公网安备 11010802034615号
经营许可证编号:京B2-20210330
老牌超级计算机厂商Cray在大数据分析领域又有大动作,其新推出的Cray Urika-XA系统预先集成了Hadoop和Spark开源框架,而Cray原有的用于图论发现的YarcData Urika设备已改名为Cray Urika-GD系统。
Urika-XA的问世意味着Cray能够同时向客户提供易用的大数据图论分析一体机(Appliance)以及支持各种高级分析应用的更加灵活开放的大数据开源平台,而且两个方案可以协同工作,也可以作为单独产品/方案使用,非常适合现阶段各行业有迫切大数据分析需求(例如金融、电信、媒体、体育、政府、生命科学/医药),同时又追求“快数据”分析性能、对未来大数据架构扩展性有较高要求的企业。正如IDC分析师所指出的:
Cray解决方案不仅将超级计算技术与Hadoop和Spark生态系统的性能结合在一起,还使企业将各种分析管道整合到同一平台。这是一个引人注目的产品,必将引起各大垂直市场上有高级分析需求的公司的兴趣。
以下为Cray Urika-XA新闻稿原文:
2014年10月16日,在2014 Strata + Hadoop World纽约大会上,全球领军超级计算机公司Cray(纳斯达克股票代码:CRAY)今天宣布推出新的大数据分析产品Cray® Urika-XA™ 系统。Cray® Urika-XA™ 系统预集成了Apache™ Hadoop® 和Apache Spark™ 框架,客户既可以享有分析设备立即可用的优势,同时又拥有灵活的开放平台,可以根据今后的分析工作负载进行改变。
Cray® Urika-XA™ 系统专为帮助客户应对任务关键型分析挑战而设计,将各种分析的不同需求整合在同一平台之上,降低了分析设备的体积和总体拥有成本。通过固态硬盘、并行文件系统、快速互连和独特的Cray Adaptive Runtime for Hadoop软件,以及针对计算密集及内存密集等应用优化的系统架构,性能足以满足对延迟敏感的实时分析应用。 Cray® Urika-XA™ 还凭借单点支持、基于标准的软件堆栈及符合行业标准,降低了系统管理的负荷。
“数据大爆炸为企业客户带来了挑战,他们必须知道如何从浩如烟海的数据中获取价值、如何选择理想的作业工具做出关键性的决定。”Cray公司总裁兼CEO Peter Ungaro表示,“大数据和高性能计算技术的融合,呼唤基于超级计算架构上的开放式分析系统,这种解决方案能使客户不仅享受先进分析技术的优势,更好地应对数据的复杂性,而且降低总体拥有成本,实现更快的价值转化结果。由于Cray® Urika-XA™是无技术锁定的分析系统, 在出厂前已经完成软硬件的安装、优化与集成测试,对于那些现有解决方案已无法满足其分析需求的不断增长的客户群,这一系统无疑是上乘之选。
在过去的几个月里, Cray® Urika-XA™ 系统已在商业运行环境和政府客户环境中进行测试。它的第一位客户是能源部橡树岭国家实验室(ORNL)。ORNL的研究人员和科学家将会把该系统应用于气象科学、材料科学和医疗保健领域的数据分析工作。
“Cray® Urika-XA™ 系统将被用于应对我们所面临要求更为苛刻的数据密集型挑战,如材料科学。我们的研究人员对此充满期待,”ORNL的数据系统架构师兼科学计算和数据环境主任Galen Shipman介绍道,“我们期待着与Cray公司携手努力,充分发挥Urika-XA平台的独特能力,共同解决这一问题和其它大数据挑战。”
Cray® Urika-XA™ 系统最多可在单个42U机架配置带固态硬盘的48个计算节点,包括Intel® Xeon®处理器,一个InfiniBand互连,以及Cray Sonexion® 存储系统。Urika-XA系统的软件堆栈,包括Apache Hadoop、Apache Spark,Cray Adaptive Runtime for Hadoop,以及Urika-XA管理系统。
“只有少数人愿意并且有能力尝试大数据的日子早已一去不复返了,各类机构纷纷试图在诸多关键任务流程中利用大数据技术和分析,” IDC商业分析和大数据项目副总裁Dan Vesset谈到,“Cray解决方案不仅将超级计算技术与Hadoop和Spark生态系统的性能结合在一起,还使企业将各种分析管道整合到同一平台。这是一个引人注目的产品,必将引起各大垂直市场上有高级分析需求的公司的兴趣。”
随着Cray Urika -XA系统的推出, Cray公司的产品组合中现在拥有了两个大数据分析解决方案。根据工作负荷的大小,两者既可协同工作又能独当一面。用于图论发现的YarcData Urika设备已改名为Cray® Urika-GD™ 系统。Cray公司目前为客户提供利用图论分析进行实时发现的大数据解决方案,以及支持Hadoop、Spark和范围广泛的分析应用的高级分析解决方案。
Cray Urika-XA系统是一个面向高性能大数据分析的预集成开放式平台。该平台既可使用预配置Hadoop和Spark框架,又可使用用户自行安装的分析工具,使各机构能够通过先进的分析功能,迅速洞察先机并捕捉商业价值。 Urika-XA平台的设计,旨在依托配备超过1500枚处理器核心的单一机架、38 TB高速SSD存储和InfiniBand互连的高密度集成系统,在最苛刻的分析工作负载条件下实现优越的性能。凭借其支持低延迟和批量分析的能力、易于管理、基于标准的设计,Urika-XA能以较低的总体拥有成本,为企业提供多用途且立即可用的分析环境。
Urika-GD系统是专门针对利用图论分析技术进行实时数据发现所设计的大数据分析设备。该设备有助于自动揭示各类数据集中的未知关系和非明显模式,无需预先建模、分区或提前知道所有的查询。Urika-GD设备包括针对图形论分析优化的硬件,可提供高达512 TB的全局共享内存;单一处理器具备128个硬件线程的多线程图论分析处理器 ;高度可扩展的I/O,数据输入/输出带宽高达每小时350 TB;和针对底层硬件优化的RDF/SPARQL数据库优化插件。立即可用并基于行业标准, Urika-CD使得现有的数据仓库或Hadoop集群功能更加完整,并很便捷地与现有分析和可视化工具集成。本文:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27