京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信大家都知道,现在大数据行业非常的火热,加上大数据行业薪资待遇高,未来发展前景好。因此,很多大学毕业生或者已毕业的青年才俊都转而投向了大数据领域,而数据分析师作为大数据行业中对技术要求相对较低的工作岗位,更是让人趋之若鹜。
很多初学大数据的朋友都觉得,想做数据分析,学会Excel的使用是必不可少的,的确如此,很多朋友甚至盲目的迷信Excel,认为做数据分析只能使用Excel,其实不然,对于数据分析师这个工作来讲,Excel并不见得那么好。笔者根据自身工作经验,对Excel做出了以下分析:
首先,笔者要向大家介绍的就是Excel的优势点:
(1)计算公式丰富,这点不用多说,用过的都知道;
(2)图表功能,通过Excel,我们可以制作出丰富多样的图表形式,这点在实际工作中非常有用;
(3)自动汇总,这个功能其实在其它程序软件上都有,只不过Excel相对来说更加的灵活方便;
(4)统计分析,对于一些需要检验的数据,使用Excel可以一键搞定;
(5)数据透视,这个功能最大的优点就是简单,对于初学者来说,只需要通过一两个小时的学习,基本上就可以上路工作了;
说完了Excel的优势点,接下来就该说一下Excel和数据库产品之间比较之后所暴露出来的一些劣势点了:
(1)数据量小,经常使用Excel的朋友应该都发现过这个问题,当Excel的数据量过大的时候,其查询和计算速度会有明显的下降,这对于工作来说实在是不可接受的,因此,就需要使用数据库产品,因为数据库产品的存储更大,可以让我们存储更多的数据信息;
(2)数据安全性较低,虽然Excel也提供了一些安全保障,但也仅限于用户的访问和修改,一般使用一个简单的破解程序就能轻松的破解,而数据库的安全性就会更高;
(3)跨平台性低,这个可以说是Excel最大的劣势点了,因为Excel只能运行在PC端和Jmac平台,而作为比较,数据库出品可以通过安装客户端的方式运行在任意平台,但我们并不是时时刻刻都能守在电脑前,所以,Excel的这一劣势点被无限放大;
虽然和数据库管理相比Excel具有这么多的劣势点,但仍然不可否认Excel是当前非常好用的数据分析工具。只不过它的缺点明显,笔者只是希望能够不要迷信Excel,而是要根据自己的情况,灵活地选择数据分析工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29