京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上篇文章中,笔者为大家介绍了几种常用的大数据使用工具,而除了那些之外,还有一些在大数据中经常会用到的工具。接下来,就让笔者继续为大家介绍一下吧。
第三类,数据挖掘类。
1.RapidMiner
这款工具主要就是用来对数据进行预测和分析的,其可视化的界面,让用户不必再自行编写代码即可运行和分析数据产品,可以说是相当方便和简单了。
2.IBM SPSS Modeler
这是一个业界领先的数据挖掘平台,具有直观的操作界面,数据准备也自动化完成,同时还具备成熟完备的数据预测分析模型,一般来说,当我们需要对数据进行分析处理的时候,都会用到这款工具。
3.Teradata
译名天睿,是美国的一所上市软件公司。经过数十年的发展,天睿公司能做到根据客户的需求,提供全面有效的解决方案,在业界拥有着不俗的地位。
当我们将数据进行清理和准备完成之后,就需要对数据进行挖掘了,数据挖掘可以说是大数据的核心所在,而以上三种工具,就可以让大家在进行数据挖掘时,更加的快速简单。
第四类,数据可视化工具。
1.Tableau
在数据可视化的领域,Tableau一直都处于行业的领先位置,它可以帮助人们快速分析、可视化并分享信息,目前,数以万计的用户通过Tableau Public在博客和网站上分享数据和信息。
2.Silk
Silk的功能和Tableau基本一致,你可以将它理解为Tableau的简化版,我们可以无需任何的编程操作就可以实现数据的可视化,非常的简单和易于操作。
3.IBM Watson Analytics
这是一款基于自然语言系统的认知服务,能够为商务人士即时迅速的提供数据预测和可视化的一种工具,它结合了机器学习和人工智能,是大家在进行数据分析和可视化操作的得力助手。
可视化是一门科学,更是一门艺术,随着大数据的普及与受众面的不断变广,人们越来越认识到可视化的重要性,数据的可视化能让公司企业的员工和高管更加简单容易的理解和分析数据,对于公司的决策和发展是非常重要的,而以上三种工具,就是非常好用的数据可视化工具。
好了,关于大数据常用的分析工具笔者就为大家介绍到这里了,有些工具是我们常见的,但更多的是比较陌生的。不过大数据已经逐渐地成为未来发展的大趋势,在这种大趋势之下,了解相关的知识和使用工具,能为我们以后的生活和职业规划,提供强有力的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06