京公网安备 11010802034615号
经营许可证编号:京B2-20210330
众所周知,现在大数据行业发展得十分火热,而大数据也确实为我们的生活带来了许多的便利。随着大数据的不断发展,需求的不断增多和提升,大数据的使用工具也变得更为重要,它们能让大家节省更多的时间和金钱。
在大数据这一概念提出到现在的这十年间,市面上出现了各类的大数据使用工具,让我们从中遴选还是比较困难的,因此就需要我们对其进行分类,从而方便我们的选择。本文就为大家将市面上较为主流的大数据分析工具,分四大类为大家进行介绍。
第一类,数据存储和管理类的大数据工具。
此类较为主流的使用工具本文为大家列出三种:
1.Cloudera
实际上,Cloudera只是增加了一些其它服务的Hadoop,因为大数据并不是容易搞,需要我们构建大数据集群, 而Cloudera的团队就可以为我们提供这些服务,还能帮培训员工。
2.MongoDB
这是一个数据库,并且非常的受大家欢迎,大数据常常采用的是非结构化数据,而MongoDB最适用于管理此类数据。
3.Talend
Talend是数据集成和解决方案领域的领袖级企业,他们为公共云和私有云提供了一体化的数据平台。
我们都知道,大数据归根结底还是数据,其根源还是始于数据的存储,而大数据之所以称之为“大”,就是因为它的数据量非常大,因此,存储就变得至关重要。除此之外,将数据按照某种格式化的治理结构,也尤为重要,因为这样,我们可以获得洞察力。而以上三种工具,就是这方面常用的三种使用工具。
第二类,数据清理类工具。
1.OpenRefine
这是一款开源的,易于使用的,可以通过删除重复项、空白字段及其他错误来清理排列杂乱无章的数据的工具,在业内广受好评。
2.Excel
这个不用多说,不仅在大数据,基本上所有的公司办公软件都会安装Excel,在Excel中有许多的公式和函数,方便我们进行一系列的操作,当然其缺点也比较明显,那就是不适用于庞大的数据集。
3.DataCleaner
就像它的名字一样,DataCleaner是一款能对数据质量进行分析、比较和监督的软件,也可以将半结构化的数据集转化成干净的可读的数据集。
由于篇幅有限,有关大数据常用的工具笔者先为大家介绍这么多。以上介绍的这些工具,对于大家来说可能有些陌生,但对于大数据来说却是“熟客”,如果大家想往大数据方向发展的话,这些工具是必须要掌握和熟练使用的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29