
作者 | Jeremie Harris
翻译 | Mika
CDA 数据分析师原创作品,转载需授权
我在一家数据科学培训公司工作。对于学员,我常常给出的建议并不是推荐库或者工具,而是让他们首先明确自己想成为什么样的数据科学家,确定自己的方向。
当中的原因在于,数据科学并不是单一且定义明确的领域,公司并不会雇用所谓的全能型数据科学家,而是会选择有拥专业技能的个人。
为了更好的理解,假设你们公司想聘请数据科学家。那么,你们肯定有明确的问题需要解决,而这需要具体的技术知识和专业知识。例如,有些公司将简单模型应用于大型数据集;有些公司将复杂模型应用于小型模型;有些公司需要动态训练模型;有些公司根本不使用(传统)模型。
以上这些都需要完全不同的技能。对于想进入数据科学领域的人群收到的建议往往是:学习使用Python,构建分类/回归/聚类等项目在开始找工作,这其实是不太合理的。
数据科学家在工作中承担了很多责任。人们会将过多的内容归入“数据科学”的范畴。为生产构建强大的数据管道,这应该是数据科学方面的问题。开发一种新的神经网络,这应该是数据科学方面的问题。
这种现象并不好,因为这会让有抱负的数据科学家失去方向和对特定问题的关注。
为了避免成为全能型数据科学家,再次之前让我们先了解数据科学领域主要有哪些职位,以及他们常常被混淆的原因:
1. 数据工程师
> 职位描述
为处理大量数据的公司管理数据管道。这意味着在数据需要从源头进行有效地收集和检索,而且在使用前需要进行清理和预处理。
> 重要性
如果你只使用过存储在.csv或.txt文件中的相对较小的数据集(小于5G),那么你可能很难理解为什么需要专人维护数据管道。
当中的原因在于:1)计算机很难承载大小为50 G的数据集,因此需要以其他方式将其提供给模型;2)大量数据可能需要花费大量时间来处理,并且经常需要冗余存储。进行管理存储需要专业的技术知识。
> 技能要求
你需要使用Apache Spark、Hadoop、Hive和Kafka。还需要有扎实的SQL的基础。
> 处理的问题
如何构建每分钟能处理1万个请求的管道?
如何在不将其全部加载到RAM的情况下清理该数据集?
2. 数据分析师
> 职位描述
将数据转化为可操作的商业见解。你通常会成为技术团队和商业策略业,销售或营销团队之间的中间人。数据可视化是你日常工作的重要组成部分。
> 重要性
有些人很难理解为什么数据分析师如此重要,但他们确实如此。数据分析师需要将经过训练和测试的模型,以及大量用户数据转换为易于理解的格式,以便转化为围商业策略。数据分析师帮助确保数据科学团队不会浪费时间来解决无法提供商业价值的问题。
> 技能要求
技能包括Python,SQL,Tableau和Excel。你还需要出色的沟通能力。
> 处理的问题
是什么带来了用户增长?
如何向管理层解释最近的使用费让用户望而却步?
3. 数据科学家
> 职位描述
清理和探索数据集,并进行能带来商业价值的预测。你的日常工作包括训练和优化模型,并将其部署到生产中。
> 重要性
当你有大量难以被解析的数据,你需要从中提取出可理解的分析见解。这是数据科学家的基本工作:将数据集转换为易于理解的结论。
> 技能要求
包括Python、scikit-learn、Pandas、SQL、也许还需要掌握Flask、Spark、TensorFlow、PyTorch。有些数据科学职位纯粹是技术性的,但大多数人要求你具备一定的商业意识。
> 处理的问题
我们有多少种不同的用户类型?
是否能建立一个模型来预测哪些产品将销售给哪些用户?
4. 机器学习工程师
> 职位描述
构建、优化机器学习模型,以及部署到生产。你的工作离不开机器学习模型,而且需要将其放入全栈应用程序或硬件中,但也需要自己设计模型。
> 技能要求
需要掌握Python、Javascript、scikit-learn,TensorFlow 、PyTorch,以及SQL或MongoDB。
> 处理的问题
如何将此Keras模型集成到我们的Javascript应用程序中?
如何减少推荐系统的预测时间和预测成本?
5. 机器学习研究员
> 职位描述
找到解决数据科学和深度学习中的挑战性问题的新方法。你不会使用开箱即用的解决方案,而是需要创建解决方案。
> 技能要求
需要用到Python、TensorFlow、PyTorch和SQL。
> 处理的问题
如何将模型的准确性提高到最高水平?
自定义优化器有助于减少训练时间吗?
结语
我在这里列出的五个职位绝对不是孤立的。例如,在早期创业公司,数据科学家也需要充当数据工程师或数据分析师的角色。但是大多数工作会按类别分类,公司规模越大,类别则越具体。
总的来说,为了找到心仪的工作,你需要明确具体的方向。如果你想成为一名数据分析师,就不用学习TensorFlow;如果你想成为一名机器学习研究员,那么不用先学Pyspark。
可以思考一下你希望为公司带来哪方面的价值,并朝着这个方向努力,这是入门的最佳方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11