京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们提到的数据预处理的数据清洗,数据清洗就是对于肮脏数据的清除,而肮脏数据主要有异常值和缺失值,我们在进行数据预处理的时候不但要注意数据的清洗,还需要注意数据的集成、数据变换、数据规范的内容,只有这样,我们才能够为下一步工作做好铺垫。今天我们就好好来讲讲数据预处理的第二部分。
首先说说数据集成吧,所谓数据集成就是将多个数据源合并放到一个数据存储中,当然如果所分析的数据原本就在一个数据存储里就不需要数据的集成了。一般来说,数据集成的实现是将两个数据框以关键字为依据,在进行数据集成时可能会出现几种情况,分别是一个数据代表着两个不同的意思,两个不同的数据代表一个意思,数据的重复出现,这三个数据使得数据分析工作变得十分繁琐,从而影响数据分析的准确性,这就需要我们对于数据进行集成的工作。
接着给大家说说数据的变换,数据的变换就是把数据转化成适当的形式,来满足软件或分析理论的需要。一般我们可以通过简单的函数变换进行数据变换,什么是简单的函数变换呢?简单函数变换用来将不具有正态分布的数据变成有正态分布的数据。
最后给大家说说数据的规范化,数据的规范化就是剔除掉变量在某种标准的影响,这就需要我们对于数据的最小最大规范化。什么是最小最大规范化呢?也叫离差标准化,对数据进行线性变换,将其范围变成[0,1]。当然我们也可以使用零均值规范化,零均值规范化也叫标准差标准化,处理后的数据均值等于0,标准差为1。如果这两总方法不合适的话,我们也可以使用小数定标规范化,就是移动属性值的小数位数,将属性值映射到区间内即可。通过数据的规范化,我们可以降低降低无效错误的数据对建模的影响、缩减时间、降低存储数据的空间。这样就能够减少数据量,同时也能够方便参数线性回归和多元回归。并且通过对数据属性的规范发现最小的属性以及确定属性概率分布。
综上所述,对于数据分析中的数据预处理的具体内容就是小编为大家提到的数据预处理的具体步骤,具体就是数据清洗、数据的集成、数据变换、数据的规范,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08