京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中,需要先挖掘数据,然后对数据进行处理。数据预处理的字面意思就是对于数据的预先处理,数据预处理的作用就是为了提高数据的质量以及使用数据分析软件。对于数据的预处理的具体步骤就是数据清洗、数据集成、数据变换、数据规范等工作,而数据预处理是对数据分析工作很重要的事情,所以大家一定要重视这个。
首先说一下数据清洗就是清理脏数据以及净化数据的环境,说到这里大家可能不知道什么是脏数据,一般来说,脏数据就是数据分析中数据存在乱码,无意义的字符,以及含有噪音的数据。脏数据具体表现在形式上和内容上的脏。就目前而言,脏数据在形式上就是缺失值和特殊符号,形式上的脏数据有缺失值、带有特殊符号的数据,内容上的脏数据上有异常值。
那么什么是缺失值呢?缺失值包括缺失值的识别和缺失值的处理。一般来说缺失值处理方法有删除、替换和插补。先来说说删除法吧。删除法根据删除的不同角度又可以分为删除观测样本和变量,删除观测样本,这就相当于减少样本量来换取信息的完整度,但当变量有较大缺失并且对研究目标影响不大时,可以直接删除。接着说一下替换法,所谓替换法就是将缺失值进行替换,根据变量的不同又有不同的替换规则,缺失值的所在变量是数值型用该变量下其他数的均值来替换缺失值;变量为非数值变量时则用该变量下其他观测值的中位数或众数替换。最后说说插补法,插补法分为回归插补和多重插补;回归插补指的是将插补的变量转变成替换法,然后根据替换法进行替换即可。
刚刚说到的缺失值,其实异常值也是需要处理的,那么什么是异常值呢?异常值跟缺失值一样,包括异常值的识别和异常值的处理。对于异常值的处理我们一般使用单变量散点图或箱形图来处理,在图形中,把远离正常范围的点当作异常值。异常值的的处理有删除含有异常值的观测、当作缺失值、平均值修正、不处理。在进行异常值处理时要先复习异常值出现的可能原因,再判断异常值是否应该舍弃。
大家在进行清洗数据的时候需要注意缺失数据的填补以及对异常数值的修正,这样才能够做好数据分析工作,由于篇幅的关系,如何做好数据预处理工作就给大家介绍到这里了,希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08