京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,很多人看到了数据分析行业的光明前景,于是就想进入数据分析的行业中,但是,想成为一名合格的数据分析师,需要掌握很多的技能,那么一名合格的数据分析师需要掌握哪些技能呢?现在的数据分析行业中有数据分析师、数据科学家、以及数据挖掘建模分析师三种职业,这三种职业的认定标准以及技能要求都是不一样的,但是我们需要学习数据分析的基础知识。那么数据分析分析师需要什么技能,数据分析行业都有什么职业呢?下面就由小编为大家解答一下这个问题。
一般来说,数据分析行业有三个层次,第一层次就是业务数据分析师。第二层就是数据挖掘建模分析师和大数据分析师。第三层次就是数据科学家。现在就给大家好好解释一下。
首先给大家讲第一层次的业务数据分析师,业务数据分析师属于初级分析师,主要指政府、金融、电信、零售等行业前端业务人员;从事市场、财务、、供应、咨询等职位业务人员;非统计、计算机专业背景零基础入行和转行就业人员。业务数据分析师需要掌握的技能有:概率论和统计学知识,能够运用Excel、R、Python、SPSS等一门专业分析软件,有商业理解能力即可。
其次给大家说一下第二层次,第二层次就是数据挖掘建模分析师和大数据分析师。数据挖掘建模分析师和大数据分析师属于同一级别,唯一不同的就是数据挖掘建模分析师和大数据分析师的方向及使用的工具略有不同。一般来说,数据挖掘建模分析师:一年以上数据分析岗位工作经验。专指政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与数据挖掘的人员。数据挖掘建模分析师技能要求:在第一层次的基础上更要求掌握多元统计、时间序列、数据挖掘等理论知识,掌握高级数据分析方法与数据挖掘算法,能够熟练运用PYTHON、R专业分析软件,熟悉使用SQL访问企业数据库。而大数据分析师:一年以上数据分析岗位工作经验。专指政府、金融、电信、零售、互联网、电商、医学等行业专门从事数据分析与云端大数据的人员。大数据分析师技能要求就是在第一层次的基础上要求掌握JAVA语言和Linux操作系统知识,能够掌握运用Hadoop、Hive、Spark等专业大数据架构及分析软件。
最后给大家说一下第三层次,第三层次就是数据科学家。数据科学家:三年以上数据分析岗位工作经验。一般数据科学家就是行业数据分析资深人员。数据科学家技能要求:掌握前沿AI相关技术,负责制定企业数据发展战略,发现企业数据价值,提升企业运行效率,增加企业价值。
由此可见,数据分析行业对技能和理论知识的要求还是比较高的,我们如果决定了进入数据分析这一行业的时候一定要努力的学习,这样才能够胜任这样的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08