京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面我们为大家讲述了Excel、数据可视化、数据分析思维、数据库的知识。学会了这些就相当于学会了数据分析一般的内容,但是这些知识并不能构成一个完整的数据分析知识体系,还需要学习统计学、Python/R以及业务知识,现在就给大家讲解一下统计学的知识。
就目前而言,很多数据分析师统计学基础知识并不是很重视,这是一种错误的做法,在数据分析知识中,统计学的地位也是不容忽视的,如果在分析数据的时候没有了统计学,那么分析数据就不那么准确了。如果相关人员不清楚某种事物的置信度的含义和概念,那么就不能够分析出一个完整的数据。如果不了解统计学的数据分析师,往往是一个粗糙的分析师。如果你想要往机器学习发展,那么统计学更是需要掌握的基础。
很多人都喜欢用平均数去分析一个事物的结果,但是这往往不是准确的,如果学习了统计学,那么我们就能够以另一个角度看待数据。毕竟很多数据分析的决策并不牢靠。我们统计学里面还需要学习描述统计中的诸多变量,比如平均数、中位数、众数、分位数、标准差、方差。这些统计标准会让新手分析师从平均数这个不靠谱的泥潭中出来。
如果将统计学和数据可视化相结合,那么这就是对数据的分布进行一个直观的概念讲解。这是因为很多特定的模型都有自有的数据分布图,这些分布图有很多,比如直方图和箱线图,如果掌握了这些分布图的好处,那么就是对数据分析有极大的帮助。由此可见,直方图和箱线图会是长久伴随分析师的利器。
要学好统计学,或者要利用好统计学,那么一定要重视概率论的研究,统计学的一大重要分支是概率论,概率是度量一件事发生的可能性,它是介于0到1之间的数值。很多事情,都可以用概率论解释,概率论包括贝叶斯公式、二项概率、泊松概率、正态分布等理论。这些理论在数据分析中都会用得到。
由此可见,统计学是一个很广阔的领域,涉及到各方各面,尤其是包括方差分析,时间序列等,都有各自不同的应用。大家在学习的时候一定要重视统计学的知识,这样才能够将数据分析的知识学的十分透彻。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06