
现在很多人都开始用大数据进行分析企业的实际情况以及未来的发展趋势,但是不是所有人都能够正确的使用好大数据的,很多人也只是听说过大数据,但是不知道怎么好好的利用大数据,那么做大数据分析有什么技巧呢?一般来说,只要做好了做好数据采集、处理肮脏数据、做好标准化数据集成、做好数据隔离就可以充分利用好大数据这一工具。
一、做好数据采集
数据采集是分析大数据中的首要任务,数据采集的好坏会直接影响到了公司的业务以及决策,所以说,只有保证好采集的数据和业务所需要的数据的标准相关性是一件非常重要的事情。数据采集的工作影响数据分析,所以在搜集数据的时候一般要去搜集哪些对公司有影响的数据类型。这样才能够为数据分析工作奠定了基础。而数据采集之后还需要对数据进行储存工作和管理工作,这也是数据分析中重要一步。当然,数据采集还需要保证数据的质量的好坏。
二、处理肮脏数据
什么是肮脏的数据?肮脏的数据就是那些不准确、冗余、不完整的信息,这些信息对于大数据来说简直就是毫无用处,同时还有极大的可能会对算法造成很大的影响,具体来说就是会影响大数据分析中的算法,从而导致大数据分析出一个不准确的结果。所以,清除肮脏数据就是一件至关重要的事情了,如果清除了肮脏数据,就能够提高数据的质量,这样才能净化大数据分析的环境。但是肮脏数据是需要人们周期性的进行清除工作。还要用不同的方式将数据完全渗透进系统里,这样就能够更加容易的清理肮脏数据。所以一个优秀的数据分析师一定能够做好数据卫生这项工作,这样才能够在进行分析大数据的时候得到一个比较精准的工作。
三、标准化数据集成
很多业务中的数据都是来源于不同点渠道,这就很容易得到一些不相关的数据,如果想要分析出这些数据,就需要对这些数据进行转化。但是,由于转化的标准不同,使得转化出来的数据和原来的数据所表达的事情有所偏离。从而干扰数据分析。所以,要想避免这些事情的发生,就需要对数据进行设立标准化的规范,这样才能够保证数据分析结果准确与否。所以标准化的数据集成也就应运而生。要想做到这些,需要中央数据管理平台集成所有的部门数据,这样就能够监控每一个部门数据的动态,从而提高的数据分析准确率。
四、数据隔离
做好处理肮脏数据工作之后,还是需要进行数据隔离工作的,这是因为数据存在组织和集成,这势必会影响数据分析的工作。而数据隔离工作就能够让数据分析的工作更有方向性。通过分析小组中的数据,能够观察出数据中不相关的现象,只要把相关数据归纳到一起,这样就能够保证数据的质量,从而提高数据分析的工作效率。很多公司向使用某种软件对数据直接进行分析,通常来说,这种数据分析不到准确的结果。这就提高了公司的使用成本。由此可见,做好数据库的管理工作是数据分析结果准确的保证。
通过上面的内容,想必大家已经知道了做大数据分析有什么技巧了吧,一般来说是做好了优化数据采集、处理肮脏数据、做好标准化数据集成、做好数据隔离就可以充分利用好大数据这一工具。希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11