京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这可能让金融精英们松了一口气,至少,技术野蛮人暂时被招安了,这些顶尖基金和投行获得超额利润的法宝,仍然要花巨额费用去买,仍然留在一个较小的圈子里。
这样的故事听上去很让人沮丧,不过,随着大数据技术基础设施的日益完善,我相信一定还将出现更多这样的创新者。
技术是让世界更扁平,是让信息鸿沟变得更小,而不是把秘密封闭起来。他们也许会发现,将这些华尔街精英们的秘密工具开放给大众,将获得更大成就。
这些故事,在很多领域都发生过,那些被小心翼翼供奉着的行业潜规则以及因此带来的金饭碗,都被一一打破,技术不断压缩着每一个“介质”过去通过信息不对称而获得的利润。
当真正的“背叛者”出现时,当这些强大的能力完全开放,金融业恐怕真的会被改写。
一方面,大量分析师的工作被取代。
面对机器对海量信息的分析能力,分析师是难以匹敌的,甚至机器不仅仅具有经济数据的量化分析,机器还能对“人”这个最具不确定性的数据进行分析,通过对无数人在互联网上的行为倾向,获得趋势信息,实际上,这项技术已经被应用到国内的大数据基金里,前有百度联手广发基金推出百发100指数,后有新浪联手南方基金推出大数据100和300指数。
如果开放这些能力,任何一个普通人都能具备一个分析师团队的资源,这时候金融机构的职能又将转变成什么?研发模型?
另一方面,金融获利模式将会改变。
所谓不确定性越大,收益越高,但是某些对大众不确定的东西未必是真正不确定的,这种差异就会成为优势一方的利益来源,当技术抹平这种不确定性的差异化时,要获得超额收益将会非常难。
如同大家都能看到卫星云图,都知晓冷空气要来了,那么冷空气来的时候大家都能提前做好准备,大家的获益是一样的,除非你不去看这个信息。
越透明博弈越难,越确定收益越低,这样,基于技术的因素,短期的预测可能将相当的确定,那么短期的收益波动越小。而大的收益恐怕得看更长期,这里面随机的影响更大,机器能给出的确定性建议更小。
更深层次上,当技术变成了一种预测的神话之后,可能还会产生非常大的社会影响。
与天气预报这类完全是客观因素的数据分析预测不同,金融不仅仅受客观因素影响,还严重的被人群的选择所左右,而技术分析预测本身又会影响人的选择,从而影响结果,这样技术可能成为正反馈的放大器。
因此,当技术分析准确到让人们深信不疑时,技术预测可能不仅仅是预测未来,而是影响未来。
举个例子,技术分析预测某个公司价值被低估,那么深信不疑的人们的行为就是倾向于买入,这就导致某个公司上涨,从而又反过来证明技术分析正确;再比如,当技术给出非常信服的结果某个股票价值10元,那么它会迅速的到达这个位置,既没人愿意更高价买,也没人愿意更低价卖。
我们乐见这一天的到来,Kensho的出现说明技术已经在不断的逼近现实,下一步等待的,是看哪个公司能打出向公众开放的旗帜。
不过,这样的技术出现又是可怕的,虽然人类生而不希望不确定,不希望冒风险,但是在我们内心深处,又希望未来是不确定的,不确定的世界,才充满了魅力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31