京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中将函数赋值给变量时需要注意的一些问题
变量赋值是我们在日常开发中经常会遇到的一个问题,本文主要给大家介绍的是关于python将函数赋值给变量时需要注意的一些问题,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍:
见过两种函数赋值给变量的形式,一种是
a=f
另一种是
a=f()
这两种形式是有区别的,分别总结一下。
1.a=f型属于将变量指向函数。
用代码验证一下:
>>> f = abs
>>> f(-10)
10
说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。这是廖雪峰老师python教程上的例子,现在调用f()和调用abs()是一样的了。
再举一个工厂函数的例子:
def maker(N):
def action(X):
return X**N
return action
这个嵌套函数的外层返回值为内层函数的函数名,注意没有括号,这里有无括号是有很大区别的。此时调用外部函数:
f=maker(2)
那么如上所述,f便指向了action函数,且限制条件为N=2,可以理解为f为N等于2时的action函数。我们来调用它:
>>> f(3)
9
证明f和action函数是一样的。
2.a=f()型属于将f()的返回值赋值给a的过程
这里的a仅仅接收f()的返回值,如果f()没有返回值,那么a即被赋值为None。这里值得注意的一点是,在a=f()的执行过程中,f()会运行一次,这也是我刚刚搞明白的,如:
>>> def add(x,y):
z=x+y
print(z)
>>>a=add(3,4)
7
这里虽然只有一个赋值语句执行了,但是却输出了结果7,说明赋值过程函数add执行了,然而a的值为None,且只能通过print语句才可以显示。不只是赋值过程函数会执行,写在return语句中也会如此。
>>>def log(func):
def wrapper(*args, **kw):
print('call %s():' % func.__name__)
return func(*args, **kw)
return wrapper
>>>@log
>>>def now():
print('2015-3-25')
这是廖雪峰老师python教程装饰器一节的例程,刚开始我以为return func(*args,**kw)这个语句是返回了now()函数(即func函数)的返回值,后来发现now函数没有返回值,即为None,所以其实是这个语句在赋值过程,
func(*args,**kw)执行了,即函数now的print语句执行了。
下面的习题中,一个变形是要求在函数调用的前后打印出'begin call'和'end call',下面一位网友的程序是这么写的:
def wrapper(*args,**kw):
print(t+'begin call')
result=func(*args,**kw)
print(t+'end call')
return result
开始不太理解为什么使用result=func(*args,**kw)这句,后来理解后才明白其实赋值本身并没有意义,只是这句话同时使得func函数运行了,所以写成
def wrapper(*args,**kw):
print(t+'begin call')
func(*args,**kw)
print(t+'end call')
结果也是一样的。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27