
大数据在网络安全中的挑战与机遇
虽然大数据是一个需要捍卫的挑战,但大数据概念现在已广泛应用于网络安全行业。
而大数据的高速、多样化、数量大的特性使其应用成为组织面临的一种挑战,它也为潜在的攻击者提供了一个诱人的目标。
但大数据技术也被用于帮助网络安全,因为许多相同的工具和方法可用于收集日志和事件数据,快速处理,并发现可疑活动。
更多的数据,更多的大脑
Bitdefender公司的高级威胁分析师Bogdan Botezatu表示:“现代网络安全解决方案主要由大数据驱动的。”
首先,所有主要的防病毒和端点防护供应商以及网络安全和防火墙提供商,都会对他们的系统进行大量的恶意软件和已知的攻击途径的培训。
有了数百万份样本,安全供应商可以训练他们的系统识别已知的攻击,但也可以识别允许他们发现以前从未见过的攻击的模式。
所有主要的安全厂商都已经将高级威胁检测、行为分析和机器学习添加到他们的系统中,或者正在努力赶上已经这样做的竞争对手。
Botezatu说:“机器学习算法每天都会在大量恶意文件中进行多次训练。质量保证运行在已知的良好文件上,以最大限度地减少误报。”
供应商并不是唯一收集信息虚拟海洋的人。
在组织内部,数据中心运营商正在从本地和云计算基础设施收集数据馈送,以查找可疑文件、行为和通信。
Botezatu说:“事件关联技术将攻击的不同组件组合在一起以阻止其冷却。”文件信誉系统会考虑客户池中存在多少个应用程序正在运行的实例,以了解该应用程序具有多大的恶意可能性。
没有存储和分析大量信息的能力,这些都不可能实现,并且可以实时进行。
“大数据为网络安全世界提供动力。”他说,“关于如何保护大数据的知识方面,没有垂直行业像我们这样享有特权。”
这是至关重要的,因为安全事件的范围越来越大。
据网络安全厂商Gemanto公司在今年4月发布的报告显示,去年有26亿条记录被突破,这一数字首次突破20亿,比上一年增长88%。平均每天超过700万条记录。
更加令人担忧的是,根据最新的Verizon数据泄露调查报告,在大多数违规情况下,系统受损的时间以分钟为单位进行测量,并在数小时内进行泄漏。
这将人们带入了网络安全领域的下一个大数据即将产生影响的领域:事件响应。
随着越来越多的数据收集的不仅仅是攻击,还涉及到数据中心如何应对这些攻击,安全行业正在开始创建自动化剧本,以便组织能够对攻击进行即时和智能的响应。
没有这种规模的公司要么必须等到收集足够的数据才能使分析有用或与同行分享他们的剧本。
企业需要留意供应商在这个领域的出现,他们不仅可以帮助数据中心将事件响应剧本集中在一起并实现自动化,还可以将它们收集到一个中心位置,在那里他们可以对响应进行分析,找出最好的策略,然后将这些知识添加到他们的推荐引擎中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11