京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的异常处理相关语句基础学习笔记
这里我们简单整理一下Python中的异常处理相关语句基础学习笔记,包括try...except与assert等基本语句的用法讲解:
异常是指因为程序出现了错误而在正常控制流以外采取的行动,其分为两个阶段,第一阶段是引发异常的错误,当系统检测到错误并且意识到异常条件,解释器(也可以是程序员引发异常)会引发一个异常通知前段控制流有错误发生,对异常的处理发生在第二阶段,异常引发后,可以调用很多不同的操作,可以是忽略错误,或是记录错误但不采取任何措施,采取补救措施后终止程序,或是江青问题的影响后设法继续执行程序
类似Python这样支持引发和处理异常的语言,可以让开发人员在错误发生时不仅有检测错误的能力,还可以采取更可靠的补救措施。
Python用异常对象(exception object)来表示异常情况,遇到错误后,引发的异常如果未被处理或捕捉,程序会自动调用回溯(Traceback)终止执行
>>> 1/0
Traceback (most recent call last):
File "", line 1, in
ZeroDivisionError: integer division or modulo by zero
>>>
python中的异常
python解释器检测的异常如:
1) NameError: 尝试访问一个未声明的变量
2)ZeroDivisionError: 除数为零
3)SyntaxError:Python语法错误
4)IndexError: 请求的索引超出序列范围
5)KeyError:请求一个不存在的字典关键字
6)IOError: 输入/输出错误
7)AttirbuteError: 尝试访问未知的对象属性
8)TypeError:在内建操作或者函数 应用于错误类型的对象时引发
9)ValueError: 在内建操作或者函数 应用于正确类型的对象,但对该对象引用不合适的值引发
由程序员明确触发异常:
raise语句:
raise [someException [, args [, traceback]]]
检测和处理异常
异常可以通过try语句来检测,主要有两种实现形式:try-except 和 try-finally:
try-except 语句
定义了进行异常监控的一段代码,并提供了处理异常的机制
try:
try_suite #进行监控的代码
except Exception[, reason]:
except_suite #异常处理的代码
[except Exception2[, reson2]:
except_suite2 # 处理try语句中可能发生的多种异常
[else:
else_suite #try中语句执行没有异常被检测到
[finally:
finally_suite #无论如何均会执行]]]
try-finally语句
finally方式的语句并不是用来捕捉异常,而是用来维持一致的行为而无论异常是否发生,无论try中是否有异常触发,finally代码段都会被执行
try:
try:
try_suite
except:
excetp_suite
finally:
finally_suite
等效于:
try:
try_suite
except:
excetp_suite
finally:
finally_suite
Assert
Python中assert的运用于C语言中的assert()函数相似,
主要功能在于确保程序中的某个条件一定为真时,才能让程序执行,否则终止程序执行并触发AssertionError错误
其可以视为相对高级点的异常处理
语法:
assert expression1, expression2
(不用小括号)
其中,expression1 表示程序继续执行的判断条件,为真则继续,为假则程序终止,并抛出expression2给出的描述信息
>>> a=10
>>> assert a<=10, "Error"
>>> a = 11
>>> assert a<=10, "Error"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: Error
等价于:
if a>10: raise AssertionError("Error")
说明:
assert语句一般用于程序编写过程中的调试,将其添加到Python源代码中后,未避免影响编译性能,
建议尽量去除assert语句,并将__debug__这个内置变量设置为False,即在运行命令行中添加参数
python -0 test.py
(这其实与C语言中的编译参数-d类似)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05