
在爱德华·斯诺登曝光了美国国家安全局(NSA)要求IT公司为其提供通话录音和数据的行径之后,乔治·奥威尔的《1984》一下子销量大增。到目前为止,人们对 “老大哥”还没到真正热爱的程度,但他们已经准备好为确保安全而付出隐私被侵犯的代价。
大数据是绕不开的话题。商业公司掌握的个人信息正在迅速地增加,他们正在利用新型的分析方法和人工智能来打造他们的产品和服务,并对客户的未来需求进行预测。谷歌的首席执行官拉里·佩奇如此形容他理想中的科技成果——一个真心聪明的助手,能够替你代劳,你不用操心,也不需要动脑。 这简直像是生活在真正的“唐顿庄园”里(庄园里的贵族得到仆人与管家的周道服侍),有一台电脑为你安排日程,规划最佳的出行线路,向你推荐合你胃口的电影,找出最适合你搭乘的航班。这听上去颇为诱人,我们每个人时间有限,都想过得轻松自在,与其被各色资讯轮番轰炸,被迫挑来选去,还不如寻求这种私人助手般的服务。 NSA的行动已经进行了整整60年,事件的曝光足以让大众深感震惊,但我估计大多数人未必能明白他们自己每天究竟创造了多少可供追踪的信息,也未必能清楚那些让大数据企业得以利用这些信息的技术有了哪些最新的发展。科技进步日新月异,两年前完全无法想象的东西,到今天已然成了家常便饭。 “前途光明却也刺眼。那些掌握海量信息的企业对你的了解程度甚至超过你本人,他们将有能力预测你下一步的行动。“李开复说,他曾掌管谷歌中国地区的业务。 上周的专栏里,我把今天的谷歌和19世纪末的通用电气做了比较,两者都是引领技术革新浪潮的创新型工业企业。但另一方面,谷歌、亚马逊、微软和其他科技巨头正在积聚的强大力量,这种力量需要小心翼翼地加以控制。 NSA和大数据企业将数据库资源和计算能力用在了不同的地方,前者用它们来侦查间谍和恐怖分子,后者利用它们来将合适的服务提供给适合的用户。他们同样利用了超大型数据库以及模式识别(pattern recognition)和网络分析(network analysis)之类的技术手段。 从前沿科技的角度看,大数据逐渐变得和某一类人工智能相似,比如哪怕你拼错了关键词,搜索引擎还是能猜得到你本来打算搜索的东西。还可以像微软去年在中国演示的那样,实时将演讲翻译成另一种语言。或者在分析了成千上万张图片之后,学会辨别猫咪的照片。 “深度学习”指的是电脑以类似人类的方式进行学习的能力,值得一提的是谷歌已经将这一领域的几位先驱人物招至麾下,其中包括科学家兼作家雷·库兹韦尔(Ray Kurzweil)。NSA向美国私人企业转移了各项技术,其中就包括了“最尖端的‘机器学习’科技” (machine learning technologies) 这类软件程序能从一些琐碎的信息中推断出许多结果,前提是信息的数量得足够多,所以NSA才会努力从威瑞森(Verizon)和其他电信运营商那里获取通话元数据(译注:元数据可以理解成关于数据的数据)。奥巴马向美国民众保证“没有人在监听你们的通话”,但这些数据本身确实价值非凡。 哈佛大学的教授拉坦亚·斯维尼(Latanya Sweeney)进行研究发现,如果在公共数据库中进行交叉查验,仅仅依靠年龄、性别和邮编信息,就能确认87%的人的身份。社交网络和互联网公司收集的数据也能办到同样的事情。 大数据公司之所以拥有超强能力,是因为他们将用户个人信息和用户行为的观察结合在了一起。他们不仅知道人们买了什么,而且知道是在哪儿买的(由智能手机的GPS数据测算)。于是你才看到了各种“您可能会喜欢……“这类推算出来的数据。 如果我跑到印度去,在安卓手机上搜索“泰姬陵”,谷歌会优先显示北方邦的那座历史名胜,要是我在伦敦市中心搜索同样东西,跳出来的会是附近的孟加拉餐厅。可能再过不久,傍晚时分,当我走在陌生城市的街上,智能手机会根据我之前给出的餐饮评价记录,主动推送餐厅信息,问我是否需要预订晚餐。 一方面,如果托了它的福,美餐了一顿,自然称心如意。可另一方面,正如世界经济论坛发布的一份关于个人信息的报告里指出的:“‘推算数据’(Inferred data)好像是一位正盯着监视屏,无所不知的老大哥。“ 由此引发的第一点忧虑便是:拥有了这样的软件之后,大数据企业变得难以匹敌。我们这些用户为他们提供的数据越多,他们就能越好地预测我们的需求。机器脑瓜真的是越用越灵。 第二个是信任问题。社交网络在用户信息保护方面一直做得不好,他们目前只能留存一小部分信息,主要关于用户的行为、习惯、对新兴服务的意向等等。难怪NSA会找上这些网站,NSA能提供足够的计算能力,而社交网络上有海量的信息资源。 第三点是所有权问题。每个人都对自己的信息享有权利,但要是自己的信息和其他人的信息混在了一起,汇入了广阔的数据库当中,会是什么结果?要是我改变了主意,不希望别人获得这些信息,它们还能不能被要回来? 最要紧的是,我们还不清楚这样的技术意味着什么,毕竟我们才刚刚把一只脚跨入大数据的时代。大数据显然有许多方面值得青睐,但要对它一见钟情,恐怕并不容易。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28