
我的R语言小白之梯度上升和逐步回归的结合使用
我们今天的主题通常在用sas拟合逻辑回归模型的时候,我们会使用逐步回归,最优得分统计模型的等方法去拟合模型。而在接触机器学习算法用R和python实践之后,我们会了解到梯度上升算法,和梯度下降算法。其实本质上模型在拟合的时候用的就是最大似然估计来确定逐步回归选出来的一个参数估计,但是这个过程你说看不到,那么现在假设你过程你可以选择,就是你来算这个最大似然估计的过程。甚至,你可以定义这个过程损失函数,那么就要使用最大似然估计。
逐步回归法结合了向前选择法和向后选择法的优点。一开始模型只有截距项,先使用前向选择法选入卡方统计量最大,符合选入模型P值的变量,然后使用后向选择法移除P值最大的变量,即最不显著的变量,不断重复以上过程。所以也可以说逐步回归的每一步都结合了向前选择法和向后选择法。
要学习梯度上升算法和梯度下降算法,就要先了解梯度的概念,要了解梯度就离不开方向导数。学过大学微积分或数学分析的同学都知道,导数代表了一个函数的变化率。但当一个函数包含多个自变量的时候,函数值的变化不仅取决于自变量的变化,还取决于使用哪个自变量。换句话说,函数值同时决定于移动的距离和移动的方向。
然后,梯度其实就是一定最大的方向导数。在自变量只有一个的时候,一点的导数其实是确定的。而到了多个自变量的时候,以一个三维空间为例(如下图的高山),概括为Y为X1,X2的函数,那么在高山上的点上升的方向就不唯一,即方向导数不唯一,那么在某点上山最快的方向就可以描述为该点的梯度。在每爬到一个地方,就不断调整上升最快的方向,最终就可以爬到山顶,成为人生赢家。在算法上就描述为每达到一个移动的步长,就计算该点的梯度,不断使Y值增加,达到最大的Y,最后可以求得最优的X1和X2。
换到梯度下降法,就可以把三维图形想象成一个碗,要想到碗底的话,就应该沿下降最快的方向。数学上就是没一步都求梯度的反方向,最后目标就是求Y的最小值。
说了这么多,那么梯度上升法和下降法对逻辑回归到底有什么用呢?逻辑回归建模有一个目标就是求解最优的系数使似然函数最大化。而下降法可以用来是损失函数最小化。先说似然函数最大化,我们可以令模型的系数为刚才举得例子的x1,x2即自变量,那么我们就可以不断迭代,找到最后的最大的似然函数和最佳的一组系数。系数的梯度上升迭代式可以写为,下面的α就是移动的步长,所乘的就是梯度。
所以,我们可以发现,逐步回归等算法其实优化模型的入模变量,梯度上升法是在选定入模变量之后,求最佳的系数去优化模型。那么,在实践上我们就可以在sas拟合完模型,选定变量后,在用R或者python用梯度上升法去求解最优的系数,但是需要明确一点吗,说是最优那是基于损失函数是一个凸函数,当损失函数不是凸函数的时候,只是找到的是局部最优。L()这个函数是自己定义的一个损失函数组成的一个类似最大似然估计的一个函数。
具体了解下,还是看不懂,可以复习一下导数,偏导数以及方向导数。因为梯度的内容实在有点多,所以还是希望大家对于梯度不了解的,可以上网查询了解。我最初想用这个的时候,我是在想一个问题,就是假设我不用最大似然估计定义的损失函数,假设我想用其他损失函数拟合参数,那我该怎么办,所以才有了今天的分享,可能我说的优点乱,我给出梯度拟合参数的过程,你可能会清晰些:
那么作为R语言小白的我,要出动献出我的梯度上升的代码了,还是参考别人的更改,这里的数据集使用的是你逐步回归选下来的变量。这里这是重新拟合参数,不适用你原来拟合的参数,是不是很作,我也觉得我很作。链接在这:http://blog.csdn.net/yuanhangzhegogo/article/details/40613951。
D<-F[-which(names(F) %in% c('APPL_ID','APPL_STATUS_1'))]
# 为等下产生的样本的矩阵做准备,所以把主键还有因变量删掉
Y=F$APPL_STATUS_1
# 将因变量单独拿出来,等下要进行运算
m<-length(Y)
# 取出y的长度,为的是等下构造截距变量,设为1
#自变量增加一列构造矩阵
x1<-rep(1,m)
# 生成截距变量,设为1
Y<-as.matrix(F$APPL_STATUS_1)
# 生成因变量的矩阵等下可以计算
X<-as.matrix(data.frame(x1,D))
#生成自变量矩阵,等下计算
maxiteration=2000
#设定迭代次数
theta<-matrix(rep(0,14),ncol=1)
# 设置初始的系数
#设定学习速度
alpha=0.0001
pred<-data.frame()
# 生成一个空表
for ( n in c(1:maxiteration)){
#计算梯度
p<-1/(1+exp(-X%*%theta))
#计算通过填入参数之后的预测概率
grad=t(X)%*%(Y-p)
#放入公式计算
a<-theta
# 把前一个的参数矩阵赋给a
theta=theta+alpha*grad
# 计算梯度上升的一个参数
interval<-theta-a
# 计算之间的差值
dd<-data.frame(interval,sum=sum(interval),theta)
# 合并差值,差值的累计,以及对应的参数
pred<-rbind(pred,dd)
# 纵向合并每一次迭代的数据
print(n)
# 打印迭代到哪里,好检查错误以及进度
}
出来的结果看数据集看pred:
最后一列是参数估计,中间是两次梯度相减的累加,可以看到迭代了2000次之后,他的差距已经很小很小的,基本可以断定快到山顶了,你要是觉得这样子差距还是让你不满意,你可以设置迭代次数到3000次。第一列是两个梯度的各个值的相减,这是为了让你看到迭代的过程该变量的权重的变小了还是变大了。当然你也可以更改我的代码,把他改成迭代到两次相减的数小于你设置的数就停止。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10