
大数据影响商业决策
现如今,无论哪个行业的企业都在谈论的是——数据。这里说的数据不是任意的数据,而是大数据。
如今我们生活在信息经济体制中,公司采集和分析的数据越多,就能在做重要的商业决策时参考更多的信息。因此,公司不必再盲目地做决定或者只能瞎猜了。而些曾经根本无法测量的参量,如今也可以进行准确地测量。
现如今,大数据非常重要,它已经能够影响到企业的估值。数据不属于公司的有形资产,但拥有着深度见解和长远预测的数据却可以指引企业走向成功。企业的声誉正是经典的案例之一。企业声誉是企业重要的无形资产,如今却可以通过采集的数据进行测算和价值评估。
除此之外,影响企业成功概率的因素还有使用数据的方式和依据数据分析所做的决策。数据变得如此有影响力,其本身也正被用来判定公司的价值。
最重要的决定——选择数据采集工具
选择商业智能软件是整个数据采集过程中最重要的部分之一,因为这是数据采集和分析的工具。许多企业最难通过软件平台来做商业决策,现在市面上有无数的数据采集软件程序,但是它们之间不尽相同,像Tableau及其它在BI领域的主要竞争对手,其数据采集软件程序在考虑用户界面之前就有着很多功能。
就这些软件而言,报告的功能是最重要的,数据的结果就是产生报告,只有数据没有报告,数据就失去其原本的作用了。用户需要定制用来生成报表的数据的呈现方式和数据类型。这样,用户就可以根据自己的核心业务指标来提取数据段。
自动采集数据的功能也极其重要。因为,数据采集应经是繁忙业务中的重要的一环,也是相当耗时的一环。所以,能够智能化采集数据并自动生成报告的软件程序,带来的实用性更强。
当然,能接入数据源也是商业智能分析软件极为重要的组成部分。商业智能软件(BI)获取的数据源越多样化,公司收集和使用的信息就越多。
数据影响重要商业决策的三种途径
根据大数据做出的决策可以在各个层面上对企业带来极大的影响。每个公司都有自己的需求,但是几乎每个公司都能利用大数据,就声誉、收入渠道和生产力方面充分考虑后做出决定。
1.声誉
2014年声誉研究会的年度声誉领袖研究显示:公司最关注的是如何量化衡量他们声誉的方式。同时,企业意识到,其中关键的一点是制定一份有效的舆情策略,提高公众可感知的品牌数据量。
通过对社交媒体平台和企业网站的数据分析,公司可以更好地测估他们在大众的眼中是什么样的形象。同时,他们也可以与客户互动,并从中了解到客户对公司品牌的满意度。这些都在很大程度上影响着公司的声誉。公司能够利用数据做关于品牌化、社交媒体营销和增进客户关系方面的决策。
2.收入渠道
在拥有大量数据的情况下,找到一个新的收入渠道会更加容易。同时,找到推广产品和服务的最佳市场营销渠道也是轻而易举的事情。两者相结合,发布新产品或者新服务的风险更低。大数据能够分析当前交易,用户投诉并改进企业产品。企业可以深入挖掘数据,发现新的机遇。
3.生产力
提高运营效率和生产力是快速提高利润的一个方法。市面上已经有大量的ERP软件,多数ERP程序可以分析从生产线正常运营时间到会计程序的几乎每种业务功能的数据。传感器可以实时追踪卡车和货物的运动,并将得到的大量数据记录到软件程序中。
收集到的数据能够告诉企业主效率低下之处,也能够找出提高生产力的自动化流程。有了大数据,你将能知道谁是生产力最高的员工,什么机器耐用性最高,甚至怎样通过缩短货车路线减少燃料费用的问题,也可以得到解答。生产力的提高的可能性是无穷的,这就是定制报告的重要性所在。
大数据背后有巨大的商业潜力,但是只有企业能够整理数据,找到真正重要的指标,才能更好地利用它。现在企业们或许正坐在一座金矿上,他们需要知道的就是怎样利用这些信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10