
大数据时代,你的网络能够“胜任”吗
大数据可以带来很大的优势,但是你的网络能够“胜任”吗?下面让我们来看看网络面临的一些挑战和注意事项。
想象这样一个情况,在第一集播出之前,广播网络就能够准确地预测电视连续剧的播出情况。我们可以通过工具来分析家电中的传感器的数据,来帮助居民降低功耗,或者利用工具通过实时追踪数据包来优化传播路线和流量消耗。
听起来太超前?其实,我们已经差不多实现了。
移动应用程序、全IP无线网络、在线商务、销售点系统、社交媒体以及传感器的崛起产生了大量数据,如果我们能够正确地分析这些数据,我们将能够挖掘出关键情报来促使业务决策。大部分这些数据是在“空中”收集的,如果迅速采取行动,这可以为企业提供独特的竞争优势,以及解决问题。
但这些数据量非常巨大,并且速度正在不断提升,这也对网络提出了更高的要求。网络需要负责处理数据,在大数据勉强,网络管理员和首席信息官面临着全新的挑战。
大数据正在不断变化,数据量已经超越了TB级到PB级,数据关系已经从简单和已知的发展为复杂和未知的;数据模型已经从固定模式类型转变为不固定模式;数据来源已经从简单的数据录入转变为各种来源,包括手持式设备和机器传感器。大数据包含各种各样的形式,例如,通话录音与信用卡交易信息有所不同。与传统应用程序中的结构化数据不同的是,大数据包含半结构化或非结构化数据,例如文本、音频、视频、点击流、日志文件,以及测量和传输地理及环境信息的传感器的输出数据。
大数据环境改变了数据在网络中流动的方式,大数据产生了更多的东-西或者服务器到服务器流量,而不是南-北或服务器到客户端流量,对于每个客户端互动,可能会有数百或者数千服务器和数据节点交互。应用程序架构已经从集中式模式转变为分布式模式。这与过去20年构建的传统的客户端/服务器网络架构相反。
从各种来源收集数据,大数据系统在服务器集群中运行,这些服务器集群分布在多个网络节点。这些集群以平行向外的模式运行任务。流量模式的运行范围从1到1(电话)、1到多(电视节目)、多到1(音乐会观众)、以及多到多(对讲机),这结合了并行运行的多个节点之间的单播和组播流量。网络管理员需要应对这种综合的流量模式,其中一些流量创建了单独的流,其中一些则创建了多个流。
此外,当数据提供到计算节点时,会产生大量网络流量。分布式节点之间的数据整理操作需要快速和可预测的数据传输。分析系统使用直接附加存储来处理,中间存储来清理数据。
数据需要在网络中四处移动,并在分析过程中有效地操作。随着新数据集的增加,以及来源的增加,工作负载也在增加,这意味着迅速增加容量的需求也在提升。因此,关键是优化网络架构中的本地性、高性能、横向扩展和直接服务节点到服务节点的连接。
其中一个设计模型涉及构建低端商品硬件,以及让分析软件对网络问题作出反应,例如重新启动因为拥塞而超时的任务。这种模式被用于非实时处理,其中完成时间并不是关键,同时,数据主要来自一个来源。
另一种模式则涉及建立基于硬件的系统,该系统能够提供确定性的性能来确保持续的处理。这种模型被用于对来自多个来源的数据的近实时分析。
网络节点在任意到任意的模型中相互连接,它们之间具有单跳,为处理多个大量数据流提供专用处理系统,具有低损耗和确定性性能,这能够有利于实时大数据系统,
交换机架构提供了整个系统带宽和性能的优势,尤其是减少延迟性。位置独立性允许集群和数据从架构中的任何位置实现最佳性能。这种架构还能实现新数据来源到集群的无缝融合,而不需要重新布线,并显著地简化了系统的扩展。这种架构提供的融合,让服务器集群以及存储区域网络跨网络通信。所有资源作为一个实体来管理,政策也可以很容易地部署到整个交换基础设施。
大数据给企业捕捉和分析数据带来了巨大的机会。随着IT企业开始测试和构建自己的解决方案,网络管理员必须考虑这些技术对其服务器、存储、网络和运营基础设施的影响。企业如何能够最好地开发新的基础设施来利用和分析不断增加的大数据流量呢?在开发网络拓扑时,请务必考虑以下问题:
回答这些问题可以帮助你构建更适合大数据的网络,它们将会指示你的基础设施将如何影响数据中心架构以及互连要求。
大数据需要企业制定新的战略,来提供实时业务分析和新的业务洞察力。随着数据的快速变化,企业有必要考虑这些关键技术来满足明天的业务需求,满足最高水平的投资保护、业务敏捷性,并缩短进入市场的时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15