
大数据分析或将带来广告3.0时代
与《广告分析2.0 时代来临》作者观点不同,我认为,如果从互联网时代开始谈起,广告的1.0 时代是“眼球经济”时代,广告的2.0 时代则是社交媒体时代,基于大数据分析的则是3.0时代。
在互联网时代,广告行业依然是依靠“千人印象成本”的计算,只是将户外广告、平媒广告的做法搬到互联网上而已——以曝光和印象为核心的广告模式。比如,电视广告计算的是收视率,机场外广告牌计算的是该区域的人流量。同理,在互联网上只是单纯地出售Banner等位置,核心问题还是抢印象。
而在社交媒体时代,在开心网、人人网、新浪微博等平台上,广告主可以实现与消费者实时互动,并促发参与和内容创造。
而广告3.0时代则在2.0的基础上,以数据分析为核心,实现对消费者购买决策过程的关注和优化。所有的传播都会最终转化为商业价值,不只停留在印象和参与的层面。
或者说,1.0时代广告与消费者都是独立存在的,二者之间不见得会有关系性,即使有联系也是单向的;2.0时代建立起消费者与广告的互动关系,但互动关系并非一定带来确定性的购买关系;3.0时代是可以完成广告与消费者行为之间确定性的购买联系。
中国市场已经走向了2.0时代的末期。如果只是社交媒体做广告营销,似乎营销人员可以靠粉丝数量“交差”了,但井喷式的社交媒体营销阶段已经过去,广告主越来越关注“粉丝关注”对商业的价值。
从广告公司的角度来说,奥美互动如何帮助广告主实现商业价值?一般,奥美互动会设定广告战略,以确定广告活动的核心目的,之后做出媒体选择,最后,创意就会解决“怎么做”的问题。
确定此次广告活动的核心目的之后,奥美互动就会选择明确的KPI。比如,在广告主只看用户活跃度的情况下,传统的战术派广告公司会选择QQ和人人网作为媒体平台,因为它们达到100万活跃用户这一指标的速度非常快。只要确定了媒体选择之后,奥美互动的跟踪程序就开始搜集数据。奥美的优势在于把不同媒体平台的数据整合在一起,分析出漏斗模型不同层次的转化率如何。如今广告主的需求是要获得有潜在购买意向的消费者,这样传统的战术派广告公司就行不通,可能高尔夫球俱乐部的数据比QQ更有效,潜在消费者更多。这要求广告公司关注购买决策的整个过程,而不是关注几个活跃度高的媒体。
举例来说,近期奥美互动帮助一个国际品牌在中国做“试点”。通常大品牌的做法是在一线城市铺设店面、做促销活动和广告轰炸。但我们提出,其实只需要在淘宝开一个网店,或者多开几家C2C网店同时开设一家品牌旗舰店。这样从品牌建立、认知度、消费偏向、销售、服务到客户忠诚度等全部用户数据都能被跟踪,从用户的购买行为就能清晰知道哪一类产品在何种情况下的销售量会比较大,同时测试品牌战略是否有效。
对公司来说,这里预示了组织变革的迫切需要——这个时代,销售与营销不能再单独分割开来。营销的曝光需要直接导向销售行为的实现,而销售本身也是在做品牌建设。根据我们的观察,日本和韩国的奶粉和纸尿裤品牌,其产品在中国市场上并无渠道网络,单纯依靠电子商务可以完成很高的销售额。
营和销结合在一起,是具有跨时代意义的分水岭。两者之间的合作更紧密,而这需要公司制度和流程的驱动,甚至迫切要求公司改变战略模式、经营模式,因为有太多小型垂直公司能够迅速在各个领域把大公司的市场蚕食和分解掉。比如,绝大多数公司的电子商务部门是独立的,但是它是向营销部门汇报还是向销售部门汇报,这是完全不同的考核指标——起到品牌的作用还是渠道分销的功能,这背后体现的是公司战略的不同考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10