京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析或将带来广告3.0时代
与《广告分析2.0 时代来临》作者观点不同,我认为,如果从互联网时代开始谈起,广告的1.0 时代是“眼球经济”时代,广告的2.0 时代则是社交媒体时代,基于大数据分析的则是3.0时代。
在互联网时代,广告行业依然是依靠“千人印象成本”的计算,只是将户外广告、平媒广告的做法搬到互联网上而已——以曝光和印象为核心的广告模式。比如,电视广告计算的是收视率,机场外广告牌计算的是该区域的人流量。同理,在互联网上只是单纯地出售Banner等位置,核心问题还是抢印象。
而在社交媒体时代,在开心网、人人网、新浪微博等平台上,广告主可以实现与消费者实时互动,并促发参与和内容创造。
而广告3.0时代则在2.0的基础上,以数据分析为核心,实现对消费者购买决策过程的关注和优化。所有的传播都会最终转化为商业价值,不只停留在印象和参与的层面。
或者说,1.0时代广告与消费者都是独立存在的,二者之间不见得会有关系性,即使有联系也是单向的;2.0时代建立起消费者与广告的互动关系,但互动关系并非一定带来确定性的购买关系;3.0时代是可以完成广告与消费者行为之间确定性的购买联系。
中国市场已经走向了2.0时代的末期。如果只是社交媒体做广告营销,似乎营销人员可以靠粉丝数量“交差”了,但井喷式的社交媒体营销阶段已经过去,广告主越来越关注“粉丝关注”对商业的价值。
从广告公司的角度来说,奥美互动如何帮助广告主实现商业价值?一般,奥美互动会设定广告战略,以确定广告活动的核心目的,之后做出媒体选择,最后,创意就会解决“怎么做”的问题。
确定此次广告活动的核心目的之后,奥美互动就会选择明确的KPI。比如,在广告主只看用户活跃度的情况下,传统的战术派广告公司会选择QQ和人人网作为媒体平台,因为它们达到100万活跃用户这一指标的速度非常快。只要确定了媒体选择之后,奥美互动的跟踪程序就开始搜集数据。奥美的优势在于把不同媒体平台的数据整合在一起,分析出漏斗模型不同层次的转化率如何。如今广告主的需求是要获得有潜在购买意向的消费者,这样传统的战术派广告公司就行不通,可能高尔夫球俱乐部的数据比QQ更有效,潜在消费者更多。这要求广告公司关注购买决策的整个过程,而不是关注几个活跃度高的媒体。
举例来说,近期奥美互动帮助一个国际品牌在中国做“试点”。通常大品牌的做法是在一线城市铺设店面、做促销活动和广告轰炸。但我们提出,其实只需要在淘宝开一个网店,或者多开几家C2C网店同时开设一家品牌旗舰店。这样从品牌建立、认知度、消费偏向、销售、服务到客户忠诚度等全部用户数据都能被跟踪,从用户的购买行为就能清晰知道哪一类产品在何种情况下的销售量会比较大,同时测试品牌战略是否有效。
对公司来说,这里预示了组织变革的迫切需要——这个时代,销售与营销不能再单独分割开来。营销的曝光需要直接导向销售行为的实现,而销售本身也是在做品牌建设。根据我们的观察,日本和韩国的奶粉和纸尿裤品牌,其产品在中国市场上并无渠道网络,单纯依靠电子商务可以完成很高的销售额。
营和销结合在一起,是具有跨时代意义的分水岭。两者之间的合作更紧密,而这需要公司制度和流程的驱动,甚至迫切要求公司改变战略模式、经营模式,因为有太多小型垂直公司能够迅速在各个领域把大公司的市场蚕食和分解掉。比如,绝大多数公司的电子商务部门是独立的,但是它是向营销部门汇报还是向销售部门汇报,这是完全不同的考核指标——起到品牌的作用还是渠道分销的功能,这背后体现的是公司战略的不同考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27