京公网安备 11010802034615号
经营许可证编号:京B2-20210330
区块链和人工智能技术能否加速物联网经济的到来
区块链、人工智能和物联网都是如今非常流行的科技名词,它们不仅拥有各自的特点,还能够互相利用互相促进。本文对人工智能和区块链如何实现物联网经济进行了分析,指出这些新技术可能改善人们对大数据的访问及交换,使设备更加智能,帮助用户通过自己的设备直接获利。
被称为物联网(IoT)的连接设备集体网络正在不断增长。高德纳咨询公司(Gartner)估计到2020年将会出现84亿物联网设备。这种增长预计大部分将出现在消费者设备领域,因为更多消费者会持有智能设备。预计企业也会加大采用以提高生产效率并使行业应用最大化。
人工智能(AI)和机器学习(ML)方面的进步会使智能设备变得更加智能化。物联网会共同生成大量的数据,并具有多种多样的功能,从而反过来用于指导和改进算法,使技术更好地发挥作用。
物联网的这些发展可能会改变世界。例如,智能温控器可能被一些人视为新奇事物,但是,这些设备实际上可以防止停电等可能出现的事件。暖季期间能源需求可能会很高。人工智能就可以监测温度设置和家庭与公司的能源消耗,并远程自动调整这些智能温控器以防断电。
数据可被视为改善物联网设备的基础,因此对于开发人员来说,更好地获得信息是至关重要的。但不幸的是,信息交换目前仍充满挑战,尽管人们正在努力改变这种情况。例如,由区块链驱动的数据流服务公司Streamr就正在推动更民主的数据交易方式,BDEX和Terbine等大数据市场则在把大数据所有者与开发人员联系起来。
1使人们能够访问大数据
一般来说,公司和开发人员必须收集和存储自己的数据,才能获取大数据。如果他们需要数据多样性,那么他们可能不得不向外界寻求这样的信息,这项工作也因此更具挑战性。许多小企业也可能缺乏资源来开展一些项目,因为他们无法利用大数据。
更令人沮丧的是,由于可访问的大数据数量有限,组织本身在使用一切时都会遇到困难。根据Forrester的数据,企业内部多达60%到73%的数据在分析中都得不到应用。有价值的信息可能只被闲置在数据仓库和数据湖泊中。
大数据所有者不会让数据在存储中“死亡”,而是会参与像BDEX这样的市场,使他们的数据可供有需要的人使用。他们甚至可以通过这样做获得收入。
2区块链与物联网
区块链在多个领域(包括物联网)得到了越来越多的采用,也因此获得了极高的热度。其透明且不可变的特点在物联网安全等方面能够得到利用。鉴于不安全设备遭劫持或被用作僵尸网络的风险越来越高,该技术成为一种深受欢迎的进步。
更多开发人员现在可以通过以太坊区块链为其各自的用途实施智能合约。这种技术可通过编程与物联网设备一起工作,这些设备中的数据可以触发自动化任务。
从数据方面来看,区块链甚至可以使数据交换更加民主。由区块链驱动的数据流平台Streamr为所有人提供去中心化手段来购买和销售数据。该平台允许数据所有者轻松连接到对等网络并传输他们的数据,其他人可以购买获得数据的权限。Streamr的市场使用区块链智能合约及代币来促进交易并激励数据交换。
Streamr的目标是使人们能够通过实时数据的价值盈利。无人驾驶汽车就能够很好地解释其服务。Streamr首席执行官Henri Pihkala写道:“为了实现最佳操作,它需要不断通过其他机器获取数据,例如来自其他车辆的交通拥堵信息、周边充电站的价格及天气预报等等。Streamr为实时数据交付和支付提供单一接口,使人们和机器能使用加密代币DATAcoin交易数据流。汽车可以自动获取其所需的数据并进行支付。反过来,汽车还可以销售它所产生的数据,例如向其他汽车销售交通数据,向智能城市销售路况测量值,向广告商销售位置和电池用量信息等。这样,数据流经济就诞生了。”
3物联网经济
这种去中心化方式的优势在于它使数据所有者能够随意地通过自己收集和生成的数据获利。他们能够按照自己的意志进行这种活动,直接通过数据盈利,而不用通过中介来进行。
区块链的透明特点还能在用户中形成一种信任感。可以使用声誉系统等机制来帮助潜在买家识别高质量数据来源。由于这个市场向所有人开放,它可能有助于实现由市场驱动的定价,而不是由少数垄断性实体来决定价格。
这种方式还有可能为物联网创建一个更加包容的生态系统,使高质量数据能够更自由地进行交换。更多的参与者也意味着更多可访问的数据来源。这反过来又有助于推动应用程序和物联网设备的改进,从而完善其性能。
区块链作为催化剂能够鼓励用户间的公开数据交换,其去中心化特点能够打破有用数据访问受限的现状。随着数据交易新方式的出现以及硬件与人工智能的不断发展,更多激动人心的创新一定会出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05