
区块链和人工智能技术能否加速物联网经济的到来
区块链、人工智能和物联网都是如今非常流行的科技名词,它们不仅拥有各自的特点,还能够互相利用互相促进。本文对人工智能和区块链如何实现物联网经济进行了分析,指出这些新技术可能改善人们对大数据的访问及交换,使设备更加智能,帮助用户通过自己的设备直接获利。
被称为物联网(IoT)的连接设备集体网络正在不断增长。高德纳咨询公司(Gartner)估计到2020年将会出现84亿物联网设备。这种增长预计大部分将出现在消费者设备领域,因为更多消费者会持有智能设备。预计企业也会加大采用以提高生产效率并使行业应用最大化。
人工智能(AI)和机器学习(ML)方面的进步会使智能设备变得更加智能化。物联网会共同生成大量的数据,并具有多种多样的功能,从而反过来用于指导和改进算法,使技术更好地发挥作用。
物联网的这些发展可能会改变世界。例如,智能温控器可能被一些人视为新奇事物,但是,这些设备实际上可以防止停电等可能出现的事件。暖季期间能源需求可能会很高。人工智能就可以监测温度设置和家庭与公司的能源消耗,并远程自动调整这些智能温控器以防断电。
数据可被视为改善物联网设备的基础,因此对于开发人员来说,更好地获得信息是至关重要的。但不幸的是,信息交换目前仍充满挑战,尽管人们正在努力改变这种情况。例如,由区块链驱动的数据流服务公司Streamr就正在推动更民主的数据交易方式,BDEX和Terbine等大数据市场则在把大数据所有者与开发人员联系起来。
1使人们能够访问大数据
一般来说,公司和开发人员必须收集和存储自己的数据,才能获取大数据。如果他们需要数据多样性,那么他们可能不得不向外界寻求这样的信息,这项工作也因此更具挑战性。许多小企业也可能缺乏资源来开展一些项目,因为他们无法利用大数据。
更令人沮丧的是,由于可访问的大数据数量有限,组织本身在使用一切时都会遇到困难。根据Forrester的数据,企业内部多达60%到73%的数据在分析中都得不到应用。有价值的信息可能只被闲置在数据仓库和数据湖泊中。
大数据所有者不会让数据在存储中“死亡”,而是会参与像BDEX这样的市场,使他们的数据可供有需要的人使用。他们甚至可以通过这样做获得收入。
2区块链与物联网
区块链在多个领域(包括物联网)得到了越来越多的采用,也因此获得了极高的热度。其透明且不可变的特点在物联网安全等方面能够得到利用。鉴于不安全设备遭劫持或被用作僵尸网络的风险越来越高,该技术成为一种深受欢迎的进步。
更多开发人员现在可以通过以太坊区块链为其各自的用途实施智能合约。这种技术可通过编程与物联网设备一起工作,这些设备中的数据可以触发自动化任务。
从数据方面来看,区块链甚至可以使数据交换更加民主。由区块链驱动的数据流平台Streamr为所有人提供去中心化手段来购买和销售数据。该平台允许数据所有者轻松连接到对等网络并传输他们的数据,其他人可以购买获得数据的权限。Streamr的市场使用区块链智能合约及代币来促进交易并激励数据交换。
Streamr的目标是使人们能够通过实时数据的价值盈利。无人驾驶汽车就能够很好地解释其服务。Streamr首席执行官Henri Pihkala写道:“为了实现最佳操作,它需要不断通过其他机器获取数据,例如来自其他车辆的交通拥堵信息、周边充电站的价格及天气预报等等。Streamr为实时数据交付和支付提供单一接口,使人们和机器能使用加密代币DATAcoin交易数据流。汽车可以自动获取其所需的数据并进行支付。反过来,汽车还可以销售它所产生的数据,例如向其他汽车销售交通数据,向智能城市销售路况测量值,向广告商销售位置和电池用量信息等。这样,数据流经济就诞生了。”
3物联网经济
这种去中心化方式的优势在于它使数据所有者能够随意地通过自己收集和生成的数据获利。他们能够按照自己的意志进行这种活动,直接通过数据盈利,而不用通过中介来进行。
区块链的透明特点还能在用户中形成一种信任感。可以使用声誉系统等机制来帮助潜在买家识别高质量数据来源。由于这个市场向所有人开放,它可能有助于实现由市场驱动的定价,而不是由少数垄断性实体来决定价格。
这种方式还有可能为物联网创建一个更加包容的生态系统,使高质量数据能够更自由地进行交换。更多的参与者也意味着更多可访问的数据来源。这反过来又有助于推动应用程序和物联网设备的改进,从而完善其性能。
区块链作为催化剂能够鼓励用户间的公开数据交换,其去中心化特点能够打破有用数据访问受限的现状。随着数据交易新方式的出现以及硬件与人工智能的不断发展,更多激动人心的创新一定会出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29