京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据爆发前仍需度过两大瓶颈
随着互联网技术日新月异,人类的线下行为逐渐迁移线上。过去人的沟通、社交、办公以及日常生活场景等其他物理行为在日益发展的强大技术背景下都将被全部数字化,现实场景数字化到线上,对个人意味着足不出户就能得到个性化、智慧化的服务,对企业意味着不在费尽周折了解一个客户过去交易记录,只需查看此客户过去的一些交易行为数据,立刻判断该客户值不值得合作。
这些个人日常行为以及企业交易行为通过日积月累而产生的大量数据,无论从容量、种类还是速度与过去已不可同日而语,甲骨文大中华区技术总经理喻思成表示:大数据时代的数据源不仅有传统的结构化数据,还有非结构化数据。大数据处理方式的要求也完全不一样了。我们并不是要完全颠覆数据管理和处理体系,而是要在原有基础上增加新的处理方式,形成更完善更完整的体系
大量数据产生的背后彰显出的是一个新产业变革的前夜,通过对大量数据的挖掘、整理、分析、利用并实现数据价值,是目前业界较关注的话题。
在记者采访多名企业CIO后,大多数企业CIO认为,国内能利用大数据背后产业价值的行业主要集中在金融、电信、能源、证券、物流行业,其他行业谈大数据价值为时尚早。虽然有反对的声音,但不得不承认在技术快速变革当今浪潮下,大量数据的产生已成必然趋势。
在科学和体育、广告和公共卫生等其他许多领域中,也有着类似的情况--就是朝着数据驱动型的发现和决策的方向发生转变。哈佛大学量化社会科学学院(Institute
for Quantitative Social
Science)院长加里-金称:“这是一种革命,我们确实正在进行这场革命,庞大的新数据来源所带来的量化转变将在学术界、企业界和政界中迅速蔓延开来。没有哪个领域不会受到影响。”
市场分析公司Ventana Research的研究表明,最常见的企业大数据类型是客户数据和交易数据。被最常分析的非机构化数据源主要是应用系统日志和事件数据,比如RFID标签信息、网络流量和监控数据。但增长最快的非结构化数据还是各类社交媒体上的文本信息。
但如何利用这些数据背后所承载的价值是目前业界思考的热切话题以及接下来需要面对的大数据挑战。
首先大数据的出现催生出产业人才缺口瓶颈,在大数据项目的实施方面,被调查公司普遍缺乏相关的技术能力。75%以上的公司表示在人员和培训方面存在障碍,会开源大数据技术Hadoop的人才很热门,但是比较难找而且昂贵。其它技术方面的挑战还包括实时数据的处理、大数据与传统的BI和数据仓库工具的整合、数据的安全性等。
SAS软件总经理刘政认为:大数据严重人才短缺,欧美公司也在中国寻找人才,但他们不知道中国本身大数据人才更匮乏。将来一个国家的竞争力很大程度上决定于分析人员,要通过数据分析结果做决策。所以分析人员的水平对于国家和企业的竞争力来说都是非常重要的,其次是商业模式问题,一个产业获得良性发展,需要好的商业模式加以驱动才能持续发展,
有业内专家表示不同行业数据需用不同的商业模式加以驱动,落地之前还需要细化与深化,特别是具体的行业应用,也有人认为,想清楚商业模式,价值才有根基,有了商业模式,大数据模型、算法也有了方向。就如啤酒与尿布,发现这个规律,数据价值方向也就彰显端倪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27