京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最小二乘法线性拟合和2次曲线拟合算法
最近由于项目要求,应用了最小二乘法线性拟合和2次曲线拟合算法,现总结如下:
最小二乘法线性拟合应用已有的采样时间点,再现这些点所描述的线性变化,即求出一个线性方程y=ax+b(这个算法的主要问题也就是如何用给定的数据求线性方程系数a和b)
//最小二乘法线性拟合,线性方程求系数,Xval时间数据,Yval每个时间点上的值数据,n数据的个数,Aval线性方程系数a,Bval线性方程系数b
BOOL DlgDataAnalyse::TwoCurveCompose(double *Xval,double *Yval,long n,double *Aval,double *Bval)
{
double mX,mY,mXX,mXY;
mX=mY=mXX=mXY=0;
for (int i=0;i
mX+=Xval[i];
mY+=Yval[i];
mXX+=Xval[i]*Xval[i];
mXY+=Xval[i]*Yval[i];
}
if(mX*mX-mXX*n==0)return FALSE;
*Aval=(mY*mX-mXY*n)/(mX*mX-mXX*n);
*Bval=(mY-mX*(*Aval))/n;
return TRUE;
}
最小二乘法2次曲线拟合应用已有的采样时间点,再现这些点所描述的2次曲线的变化,即求出一个二次曲线方程y=ax2+bx+c (这个算法的主要问题也就是如何用给定的数据求方程系数abc)
今天使用拟合的最小二乘法,求出了给定的一组坐标系上的点对最接近的直线的。
其具体理论如下:
在科学实验数据处理中,往往要根据一组给定的实验数据
,求出自变量x与因变量y的函数关系
,这是
为待定参数,由于观测数据总有误差,且待定参数ai的数量比给定数据点的数量少(即n<m),因此它不同于插值问题.这类问题不要求
通过点
,而只要求在给定点
上的误差
的平方和
最小.当
时,即
(5.8.1)
这里
是线性无关的函数族,假定在
上给出一组数据
,
以及对应的一组权
,这里
为权系数,要求
使
最小,其中
(5.8.2)
这就是最小二乘逼近,得到的拟合曲线为y=s(x),这种方法称为曲线拟合的最小二乘法.
(5.8.2)中
实际上是关于
的多元函数,求I的最小值就是求多元函数I的极值,由极值必要条件,可得
(5.8.3)
根据内积定义(见第三章)引入相应带权内积记号
(5.8.4)
则(5.8.3)可改写为
![]()
这是关于参数
的线性方程组,用矩阵表示为
(5.8.5)
(5.8.5)称为法方程.当
线性无关,且在点集
上至多只有n个不同零点,则称
在X上满足Haar条件,此时(5.8.5)的解存在唯一(证明见[3]).记(5.8.5)的解为
从而得到最小二乘拟合曲线
(5.8.6)
可以证明对
,有
![]()
故(5.8.6)得到的
即为所求的最小二乘解.它的平方误差为
(5.8.7)
均方误差为
![]()
在最小二乘逼近中,若取
,则
,表示为
(5.8.8)
此时关于系数
的法方程(5.8.5)是病态方程,通常当n≥3时都不直接取
作为基。
//最小二乘法二次曲线拟合算法,Xval时间数据,Yval每个时间点上的值数据,M代表几次曲线(如:2次的话就是3),N数据的个数,A二次曲线方程的系数(A[2]代表a,A[1]代表b,A[0]代表c)
BOOL DlgDataAnalyse::CalculateCurveParameter(double *Xval,double *Yval,long M,long N,double *A)
{
//X,Y -- X,Y两轴的坐标
//M -- 次数,表示几次曲线
//N -- 采样数目
//A -- 结果参数
register long i,j,k;
double Z,D1,D2,C,P,G,Q;
CDoubleArray B,T,S;
B.SetSize(N);
T.SetSize(N);
S.SetSize(N);
if(M>N)M=N;
for(i=0;i
Z=0;
B[0]=1;
D1=N;
P=0;
C=0;
for(i=0;i
P=P+Xval[i]-Z;
C=C+Yval[i];
}
C=C/D1;
P=P/D1;
A[0]=C*B[0];
if(M>1)
{
T[1]=1;
T[0]=-P;
D2=0;
C=0;
G=0;
for(i=0;i
Q=Xval[i]-Z-P;
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[1]=C*T[1];
A[0]=C*T[0]+A[0];
}
for(j=2;j
S[j]=T[j-1];
S[j-1]=-P*T[j-1]+T[j-2];
if(j>=3)
{
for(k=j-2;k>=1;k--)
S[k]=-P*T[k]+T[k-1]-Q*B[k];
}
S[0]=-P*T[0]-Q*B[0];
D2=0;
C=0;
G=0;
for(i=0;i
Q=S[j];
for(k=j-1;k>=0;k--)
Q=Q*(Xval[i]-Z)+S[k];
D2=D2+Q*Q;
C=Yval[i]*Q+C;
G=(Xval[i]-Z)*Q*Q+G;
}
C=C/D2;
P=G/D2;
Q=D2/D1;
D1=D2;
A[j]=C*S[j];
T[j]=S[j];
for(k=j-1;k>=0;k--)
{
A[k]=C*S[k]+A[k];
B[k]=T[k];
T[k]=S[k];
}
}
return TRUE;
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22