
Python松散正则表达式用法分析
本文实例讲述了Python松散正则表达式用法。分享给大家供大家参考,具体如下:
Python 允许用户利用所谓的 松散正则表达式来完成这个任务。一个松散正则表达式和一个紧凑正则表达式主要区别表现在两个方面:
1. 忽略空白符。空格符,制表符,回车符不匹配它们自身,他们根本不参与匹配。(如果你想在松散正则表达式中匹配一个空格符,你必须在它前面添加一个反斜线符号对他进行转义)
2. 忽略注释。在松散正则表达式中的注释和在普通Python代码中的一样:开始于一个#符号,结束于行尾。这种情况下,采用在一个多行字符串中注释,而不是在源代码中注释,他们以相同的方式工作。
下面是一个松散正则表达式的例子,直观地看,正则表达式模式被分成好几行来写了,我们可以为每行配上我们的注释。这样在过段时间后回头过来看我们可以很快地知道这个正则表达式的作用,增强代码的可读性。
>>> import re
>>> pattern = """
^ # beginning of string
M{0,4} # thousands - 0 to 4 M's
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
# or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
# or 50-80 (L, followed by 0 to 3 X's)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
# or 5-8 (V, followed by 0 to 3 I's)
$ # end of string
"""
>>> re.search(pattern, 'M', re.VERBOSE)
<_sre.SRE_Match object at 0x01401570>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE)
<_sre.SRE_Match object at 0x014015C0>
>>> re.search(pattern, 'M')
>>>
使用松散正则表达式时必须传递另外一个参数re.VERBOSE,该参数是定义在re 模块中的一个常量,标志着待匹配的正则表达式是一个松散正则表达式。Python 不能自动检测一个正则表达式是为松散类型还是紧凑类型,所以必须显式的标明一个正则表达式为松散类型。所以
re.search(pattern, 'M', re.VERBOSE)#松散正则表达式
跟:
re.search(pattern, 'M'))#默认为“紧凑”正则表达式
得到的结果就不一样了。
下面是很常见的一些正则表达式:
^ 匹配字符串的开始。
$ 匹配字符串的结尾。
\b 匹配一个单词的边界。
\d 匹配任意数字。
\D 匹配任意非数字字符。
x? 匹配一个可选的x字符(换句话说,它匹配1次或者0次x 字符)。
x* 匹配0次或者多次x字符。
x+匹配1次或者多次x字符。
x{n,m} 匹配x字符,至少n次,至多m次。
(a|b|c)要么匹配a,要么匹配b,要么匹配c。
(x) 一般情况下表示一个记忆组(remembered group). 我们可以利用re.search函数返回对象的groups()函数获取它的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27