
Python松散正则表达式用法分析
本文实例讲述了Python松散正则表达式用法。分享给大家供大家参考,具体如下:
Python 允许用户利用所谓的 松散正则表达式来完成这个任务。一个松散正则表达式和一个紧凑正则表达式主要区别表现在两个方面:
1. 忽略空白符。空格符,制表符,回车符不匹配它们自身,他们根本不参与匹配。(如果你想在松散正则表达式中匹配一个空格符,你必须在它前面添加一个反斜线符号对他进行转义)
2. 忽略注释。在松散正则表达式中的注释和在普通Python代码中的一样:开始于一个#符号,结束于行尾。这种情况下,采用在一个多行字符串中注释,而不是在源代码中注释,他们以相同的方式工作。
下面是一个松散正则表达式的例子,直观地看,正则表达式模式被分成好几行来写了,我们可以为每行配上我们的注释。这样在过段时间后回头过来看我们可以很快地知道这个正则表达式的作用,增强代码的可读性。
>>> import re
>>> pattern = """
^ # beginning of string
M{0,4} # thousands - 0 to 4 M's
(CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 C's),
# or 500-800 (D, followed by 0 to 3 C's)
(XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 X's),
# or 50-80 (L, followed by 0 to 3 X's)
(IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 I's),
# or 5-8 (V, followed by 0 to 3 I's)
$ # end of string
"""
>>> re.search(pattern, 'M', re.VERBOSE)
<_sre.SRE_Match object at 0x01401570>
>>> re.search(pattern, 'MCMLXXXIX', re.VERBOSE)
<_sre.SRE_Match object at 0x014015C0>
>>> re.search(pattern, 'M')
>>>
使用松散正则表达式时必须传递另外一个参数re.VERBOSE,该参数是定义在re 模块中的一个常量,标志着待匹配的正则表达式是一个松散正则表达式。Python 不能自动检测一个正则表达式是为松散类型还是紧凑类型,所以必须显式的标明一个正则表达式为松散类型。所以
re.search(pattern, 'M', re.VERBOSE)#松散正则表达式
跟:
re.search(pattern, 'M'))#默认为“紧凑”正则表达式
得到的结果就不一样了。
下面是很常见的一些正则表达式:
^ 匹配字符串的开始。
$ 匹配字符串的结尾。
\b 匹配一个单词的边界。
\d 匹配任意数字。
\D 匹配任意非数字字符。
x? 匹配一个可选的x字符(换句话说,它匹配1次或者0次x 字符)。
x* 匹配0次或者多次x字符。
x+匹配1次或者多次x字符。
x{n,m} 匹配x字符,至少n次,至多m次。
(a|b|c)要么匹配a,要么匹配b,要么匹配c。
(x) 一般情况下表示一个记忆组(remembered group). 我们可以利用re.search函数返回对象的groups()函数获取它的值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03