京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解析Python编程中的包结构
假设你想设计一个模块集(也就是一个“包”)来统一处理声音文件和声音数据。通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能需要创建和维护一个不断增长的各种文件格式之间的转换的模块集合。
并且可能要执行声音数据处理(如混合,添加回声,应用平衡功能),所以你写一个永无止境的流模块来执行这些操作:模块设计的包如下:
sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...
filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...
当导入包以后,Python通过sys.path中的目录来寻找包的子目录。 每一个包都必须有__init__.py文件,这样做是为了防止某些目录有一个共同的名字。在最简单的情况下,__ init__.py可以只是一个空文件,但它也可以执行包的初始化代码,包括设置__all__变量,稍后介绍。 我们可以从包中导入单个模块,
例如: import sound.effects.echo 这会载入子模块sound.effects.echo。它必须引用全名。
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)
另外一种导入子模块的方法: from sound.effects import echo 这样就加载了echo子模块,没有包括包的前缀,因此它可以用作如下:
echo.echofilter(input, output, delay=0.7, atten=4)
或者可以
from sound.effects.echo import echofilter echofilter(input, output, delay=0.7, atten=4)
请注意,如果你使用包导入一个子模块(或子包),像一个函数,类或变量。 import语句首先测试导入的对象是否包中定义,如果没有,它假定这是一个模块,并尝试加载它。如果还没有找到,则会引发一个ImportError异常。
python 包管理工具大乱斗
1. distutils
distutils 是 python 标准库的一部分,2000年发布。使用它能够进行 python 模块的 安装 和 发布。
etup.py 就是利用 distutils 的功能写成,我们可以看一个简单的 setup.py 的例子。
在这里可以看到关于 setupt.py 格式的所有详细描述:Writing the Setup Script。
要安装一个模块到当前的 python 环境中,可以使用这个模块提供的 setup.py 文件:
python setup.py install
下面的代码会发布一个 python 模块,将其打包成 tar.gz 或者 zip 压缩包:
python setup.py sdist
甚至能打包成 rpm 或者 exe 安装包:
python setup.py bdist_rpm
python setup.py bdist_wininst
2. setuptools 和 distribute
setuptools 是一个为了增强 distutils 而开发的集合,2004年发布。它包含了 easy_install 这个工具。
ez_setup.py 是 setuptools 的安装工具。ez 就是 easy 的缩写。
简单的说,setuptools 是一个项目的名称,是基础组件。而 easy_install 是这个项目中提供的工具,它依赖基础组件工作。
为了方便描述,下面文章中提到的 setuptools 被认为与 easy_install 同义。
使用 setuptools 可以自动 下载、构建、安装和管理 python 模块。
例如,从 PyPI 上安装一个包:
easy_install SQLObject
下载一个包文件,然后安装它:
easy_install http://example.com/path/to/MyPackage-1.2.3.tgz
从一个 .egg 格式安装:
easy_install /my_downloads/OtherPackage-3.2.1-py2.3.egg
distribute 是 setuptools 的一个分支版本。分支的原因可能是有一部分开发者认为 setuptools 开发太慢了。但现在,distribute 又合并回了 setuptools 中。因此,我们可以认为它们是同一个东西。事实上,如果你查看一下 easy_install 的版本,会发现它本质上就是 distribute 。
# easy_install --version
distribute 0.6.28
3. Eggs
Eggs 格式是 setuptools 引入的一种文件格式,它使用 .egg 扩展名,用于 Python 模块的安装。
setuptools 可以识别这种格式。并解析它,安装它。
4. pip
注意,从此处开始,easy_install 和 setuptools 不再同义。
pip 是目前 python 包管理的事实标准,2008年发布。它被用作 easy_install 的替代品,但是它仍有大量的功能建立在 setuptools 组件之上。
pip 希望不再使用 Eggs 格式(虽然它支持 Eggs),而更希望采用“源码发行版”(使用 python setup.py sdict 创建)。这可以充分利用 Requirements File Format 提供的方便功能。
pip 可以利用 requirments.txt 来实现在依赖的安装。在 setup.py 中,也存在一个 install_requires 表来指定依赖的安装。
pip 支持 git/svn/hg 等流行的 VCS 系统,可以直接从 gz 或者 zip 压缩包安装,支持搜索包,以及指定服务器安装等等功能。
pip vs easy_install 详细介绍了两者的不同。它们可以说是各占胜场,但 pip 明显优势更大。
5. wheel
wheel 本质上是一个 zip 包格式,它使用 .whl 扩展名,用于 python 模块的安装,它的出现是为了替代 Eggs。
wheel 还提供了一个 bdist_wheel 作为 setuptools 的扩展命令,这个命令可以用来生成 wheel 包。
pip 提供了一个 wheel 子命令来安装 wheel 包。当然,需要先安装 wheel 模块。
setup.cfg 可以用来定义 wheel 打包时候的相关信息。
Wheel vs Egg 详细介绍了 wheel 和 Eggs 格式的区别,很显然,wheel 优势明显。
Python Wheels 网站展示了使用 Wheels 发行的 python 模块在 PyPI 上的占有率。
pypip.in 也支持 wheel。
6. distutils2 和 distlib
distutils2 被设计为 distutils 的替代品。从2009年开发到2012年。它包含更多的功能,并希望以 packaging 作为名称进入 python 3.3 成为标准库的一部分。但这个计划 后来停滞了 。
distlib 是 distutils2 的部分,它为 distutils2/packaging 提供的低级功能增加高级 API,使其便于使用。
这里 介绍了 distlib 没有进入 python 3.3 标准库的一些原因。
因此,可以暂时不必了解这两个工具,静观其变即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27