
R语言数据读取以及数据保存
一、R语言读取文本文件:
1、文件目录操作:
getwd() : 返回当前工作目录
setwd("d:/data") 更改工作目录
2、常用的读取指令read
read.table() : 读取文本文件
read.csv(): 读取csv文件
如果出现缺失值,read.table()会报错,read.csv()读取时会自动在缺失的位置填补NA
3、灵活的读取指令scan() :
4、读取固定宽度格式的文件:read.fwf()
文本文档中最后一行的回车符很重要,这是一个类似于停止符的标识,否则读入时会显示“最后一行不完整”的警告,但是不影响数据读入的效果。
5、读取Excel数据:
(1)第一种方法
首先打开Excel,选中需要的数据后复制,
然后再R中输入以下的指令:data.excel =read.delim("clipboard") #clipboard即剪贴板
(2)第二种方法:
使用RODBC包,获取Excel连接的函数是odbcConnectExcel()和odbcConnectExcel2007() 分别读取Excel2003版和2007版的数据channel =odbcConnectExcel2007("d:/a.xlsx")
sqlTables(channel)# 列出Excel中的表格
获取Sheet1中的数据,可以使用如下任意的一种方式,
data.excel2 =sqlFetch(channel,"Sheet1")
data.excel2 =sqlQuery(channel,"select * from [Sheet1$]")
close(channel) #关闭ODBC连接,释放空间
6、读取网页数据
readHTMLTable()函数
7、读取R格式的文件:
R的数据或者更一般的对象可以通过save()保存为R专有的文件格式,以Rdata为后缀,要读取此类文件,需要用到函数load()来加载,
8、readLines("d:/data/cat.txt"): 可以直接从连接中以行的形式来读取文本
要显示列表中的变量 需要使用符号$
二、数据保存:
1、使用函数cat()
cat(...,file="",sep="",fill = FALSE ,labels=NULL,append=FALSE) #file表示要输出的文件名,当参数append=TRUE时,在指定文件的末尾添加内容。sep:表示以空格作为分隔符
2、保存为文本文件:
write仅可以写出一个矩阵或向量的特定列,和对一个矩阵进行转置
write.table() 可以把一个数据框或列表等对象以包含行列标签的方式写出。
write.csv(): 将数据框保存为逗号分隔文件,但是不包含列名
3、保存R格式文件:
save(data,file="d:/data/salary1.Rdata")
dim():求维度
mode() 用来显示对象的类型
names():显示对象中的标签
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08