
在 Booking 当数据科学家是怎样一种体验
Nishikant是Booking公司的一名高级数据分析师,在本文中他分享了自己在Booking从数据科学家新手到大师的发展历程。
求职
在迪拜做了3年咨询类工作之后,我作为一名数据科学家加入了Booking 。从咨询转行到数据科学领域是我职业生涯中的重大转变,现在看来我很高兴当初做了这一选择。
在面试时,我就对Booking的感觉特别好。我有机会与数据科学家交谈,面试官的背景非常多样,其中一位拥有天文学的博士学位,另一位是自己创业公司的首席技术官。
同时Booking的伙食特别好,这也是我选择Booking的原因之一。
入职
我还记得入职的第一天,同事问我”你对你的屏幕还满意吗?”这让我很意外,因为我以前工作时只配备了一台笔记本电脑。Booking之后给我配备了一台Mac、两个大屏幕以及其他一些酷炫的设备。
入职后不久,我参与的第一个入职项目涉及到分析大量文本,我需要从中得出业务见解。以前我只有结构化数据方面的经验,因此我对这个新挑战感到兴奋。我希望提高自己文本数据的水平,但不久之后我就遇到困难了,那就是Booking庞大的数据规模。
Booking每24小时订出150万个房间,同时有数百万人访问网站,这意味着数据科学家所接触的数据规模相当大。还好公司有使用Spark进行分布式计算的内部培训。通过培训,如今我能够在多台机器上运行分析。
项目
我的第二个项目是为合作网站构建推荐引擎。以前我只做过标准回归和分类模型,这是我第一次接触到协同过滤和分解机。
由于数据规模,我不得不用PySpark进行稀疏分布矩阵。在编写代码之后,我们进行了A / B测试,看这样是否会对我们的业务带来积极影响。这也是我第一次接触A / B测试,但幸运的是公司配有完备的实验工具和基础设施,从而让这一过程并不困难。通过多次迭代,我们顺利处理了冷启动问题,并成功完成了该项目。
Booking的数据科学家在Analytics Fair上展示项目
接下来是大量的项目,每个项目都有不同的挑战,作为数据科学家我需要不断地学习。例如,其中一个项目需要我将业务问题表示为加权网络图,并进行相关分析; 在另一个项目中,我需要从简单的数据分析中得出有价值的见解。
就这样过了两年半,我目前是Booking的高级数据科学家。现在我致力于研究人工智能产品的机器翻译,并通过部署神经网络和深度学习解决方案构建全面的生产系统。
团队构成
下面我打算介绍下Booking的团队构成。
我们采用“嵌入式”结构,数据科学家与业务紧密相连。我参与的团队中有开发人员、数据科学家、产品负责人和其他专家。团队结合所有的力量,将相关概念实施到具体产品。在日常运营中,我们遵循一定的准则:每日会议、回顾、待办事项、团队目标、KPI和OKR(目标和关键结果)。再加上每两周一次的会议,能够让团队稳步发展,并尽快学习。
正是与业务的紧密联系,Booking的数据科学家都有很强的沟通能力和商业意识,同时还有很强的专业技能。这些都是我们在面试求职者时要测试的基本技能。
出色的数据科学家
Booking共有120 多名数据科学家,而且社区在日益壮大。每位数据科学家都有不同的背景和技能强项。
有些人是数据科学新手,有些人则有丰富的工作经验; 有些人是贝叶斯派,有些人是频率学派; 有些人喜欢用R语言,有些人更喜欢用Python; 有些人喜欢用Vowpal Wabbit,有些人则喜欢使用Spark和H2O进行分布式计算。
这种多样性可以让大家彼此学习和进步。我们每周都会举行相关的聚会和会谈,当中我们会谈论最新的行业动向和研究论文,并结合解决Booking的实际问题。此外,公司还会定期举办相关技术培训,包括A / B测试、Git、Hive、Python、R、Spark、H2O、TensorFlow等内容。
Booking数据科学社区每周会谈
在我看来,在Booking工作最大的财富就是出色的数据科学社区,在当中我每天都能学习新事物,并且十分开心。
面对的挑战
同时我们也有面对一些挑战。
首先,由于我们的数据科学社区发展得非常快,这也为分享知识带来了难度。为了解决这个问题,我们尝试了很多方法,比如针对专业的话题(比如自然语言处理),黑客马拉松等方面展开讨论,从而更好地分享知识。
让数据科学家参与业务也有其不利之处。有时在日常工作中我们会缺少同事的相关反馈。为了解决这个问题,我们鼓励大家分享各自的成果,并与同事一起讨论他们的最新项目。同时我们也为新员工提供导师计划。
尽管我们已多次为数据科学社区做出贡献,但我们也希望将成果分享给外部。我们目前正在制定一些指导方案。
Booking的数据科学家们在船上聚会
最后我想说,在Booking当数据科学家非常愉快,而且从来不会缺少机遇与挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29