京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Booking 当数据科学家是怎样一种体验
Nishikant是Booking公司的一名高级数据分析师,在本文中他分享了自己在Booking从数据科学家新手到大师的发展历程。
求职
在迪拜做了3年咨询类工作之后,我作为一名数据科学家加入了Booking 。从咨询转行到数据科学领域是我职业生涯中的重大转变,现在看来我很高兴当初做了这一选择。
在面试时,我就对Booking的感觉特别好。我有机会与数据科学家交谈,面试官的背景非常多样,其中一位拥有天文学的博士学位,另一位是自己创业公司的首席技术官。
同时Booking的伙食特别好,这也是我选择Booking的原因之一。
入职
我还记得入职的第一天,同事问我”你对你的屏幕还满意吗?”这让我很意外,因为我以前工作时只配备了一台笔记本电脑。Booking之后给我配备了一台Mac、两个大屏幕以及其他一些酷炫的设备。
入职后不久,我参与的第一个入职项目涉及到分析大量文本,我需要从中得出业务见解。以前我只有结构化数据方面的经验,因此我对这个新挑战感到兴奋。我希望提高自己文本数据的水平,但不久之后我就遇到困难了,那就是Booking庞大的数据规模。
Booking每24小时订出150万个房间,同时有数百万人访问网站,这意味着数据科学家所接触的数据规模相当大。还好公司有使用Spark进行分布式计算的内部培训。通过培训,如今我能够在多台机器上运行分析。
项目
我的第二个项目是为合作网站构建推荐引擎。以前我只做过标准回归和分类模型,这是我第一次接触到协同过滤和分解机。
由于数据规模,我不得不用PySpark进行稀疏分布矩阵。在编写代码之后,我们进行了A / B测试,看这样是否会对我们的业务带来积极影响。这也是我第一次接触A / B测试,但幸运的是公司配有完备的实验工具和基础设施,从而让这一过程并不困难。通过多次迭代,我们顺利处理了冷启动问题,并成功完成了该项目。
Booking的数据科学家在Analytics Fair上展示项目
接下来是大量的项目,每个项目都有不同的挑战,作为数据科学家我需要不断地学习。例如,其中一个项目需要我将业务问题表示为加权网络图,并进行相关分析; 在另一个项目中,我需要从简单的数据分析中得出有价值的见解。
就这样过了两年半,我目前是Booking的高级数据科学家。现在我致力于研究人工智能产品的机器翻译,并通过部署神经网络和深度学习解决方案构建全面的生产系统。
团队构成
下面我打算介绍下Booking的团队构成。
我们采用“嵌入式”结构,数据科学家与业务紧密相连。我参与的团队中有开发人员、数据科学家、产品负责人和其他专家。团队结合所有的力量,将相关概念实施到具体产品。在日常运营中,我们遵循一定的准则:每日会议、回顾、待办事项、团队目标、KPI和OKR(目标和关键结果)。再加上每两周一次的会议,能够让团队稳步发展,并尽快学习。
正是与业务的紧密联系,Booking的数据科学家都有很强的沟通能力和商业意识,同时还有很强的专业技能。这些都是我们在面试求职者时要测试的基本技能。
出色的数据科学家
Booking共有120 多名数据科学家,而且社区在日益壮大。每位数据科学家都有不同的背景和技能强项。
有些人是数据科学新手,有些人则有丰富的工作经验; 有些人是贝叶斯派,有些人是频率学派; 有些人喜欢用R语言,有些人更喜欢用Python; 有些人喜欢用Vowpal Wabbit,有些人则喜欢使用Spark和H2O进行分布式计算。
这种多样性可以让大家彼此学习和进步。我们每周都会举行相关的聚会和会谈,当中我们会谈论最新的行业动向和研究论文,并结合解决Booking的实际问题。此外,公司还会定期举办相关技术培训,包括A / B测试、Git、Hive、Python、R、Spark、H2O、TensorFlow等内容。
Booking数据科学社区每周会谈
在我看来,在Booking工作最大的财富就是出色的数据科学社区,在当中我每天都能学习新事物,并且十分开心。
面对的挑战
同时我们也有面对一些挑战。
首先,由于我们的数据科学社区发展得非常快,这也为分享知识带来了难度。为了解决这个问题,我们尝试了很多方法,比如针对专业的话题(比如自然语言处理),黑客马拉松等方面展开讨论,从而更好地分享知识。
让数据科学家参与业务也有其不利之处。有时在日常工作中我们会缺少同事的相关反馈。为了解决这个问题,我们鼓励大家分享各自的成果,并与同事一起讨论他们的最新项目。同时我们也为新员工提供导师计划。
尽管我们已多次为数据科学社区做出贡献,但我们也希望将成果分享给外部。我们目前正在制定一些指导方案。
Booking的数据科学家们在船上聚会
最后我想说,在Booking当数据科学家非常愉快,而且从来不会缺少机遇与挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04