
Python基础教程之利用期物处理并发
抨击线程的往往是系统程序员,他们考虑的使用场景对一般的应用程序员来说,也许一生都不会遇到……应用程序员遇到的使用场景,99% 的情况下只需知道如何派生一堆独立的线程,然后用队列收集结果。
本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。
本文重点:
1、掌握异步编程的相关概念;
2、了解期物future的概念、意义和使用方法;
3、了解Python中的阻塞型I/O函数释放GIL的特点。
一、异步编程相关概念
阻塞:程序未得到所需计算资源时被挂起的状态。换句话说,程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。
并发:描述的是程序的组织结构。指程序要被设计成多个可独立执行的子任务。并发以利用有限的计算机资源使多个任务可以被实时或近实时执行为目的。
并行:指的是多任务同时执行的程序状态,以利用多核CPU加速完成多任务为目的。
异步:为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式。
不相关的程序单元之间可以是异步的。简言之,异步意味着无序。
异步编程:以进程、线程、协程、函数/方法作为执行任务的基本单位,结合回调,事件循环、信号量等机制,以提高整体执行效率和并发能力的编程方式。
二、期物
就下载国旗为目标实现的三个客户端中,两个HTTP并发客户端比依序下载的脚本性能高很多。
由此说明使用并发可以高效处理网络I/O。
期物(future)指一种对象,表示异步执行的操作。
期物对象:concurrent.futures.Future或asyncio.Future类的实例。
三大方法:
Executor.submit():创建期物。
concurrent.futures.as_completed():迭代运行结束的期物,返回一个迭代器。
Executor.map(): 处理参数不同的同一个可调用对象。
小结:Executor.submit()加futures.as_completed()的组合比Executor.map()更灵活,因为submit()能处理不同的可调用对象和参数。
concurrent.futures模块的主要特色是ThreadPoolExecutor和ProcessPoolExecutor类,这两个类实现的接口能分别在不同的线程或进程中执行可调用的对象。
注意:通常情况下自己不应该创建期物,而只能由并发框架(concurrent.futures或asyncio)实例化。
实例:concurrent.futures模块应用
from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
image = get_flag(cc)
show(cc)
save_flag(image, cc.lower() + '.gif')
return cc
def download_many(cc_list):
workers = min(MAX_WORKERS, len(cc_list))
with futures.ThreadPoolExecutor(workers) as executor:
res = executor.map(download_one, sorted(cc_list))
return len(list(res))
if __name__ == '__main__':
main(download_many)
三、阻塞性I/O与GIL
Python标准库中所有阻塞型I/O函数都会释放全局解释器锁(GIL),允许其他线程运行。
因此尽管有GIL,Python线程仍然适合在I/O密集型系统使用。
四、线程和多进程的替代方案
对CPU密集型工作来说,要启动多个进程,规避GIL。
创建多进程最简单的方式是使用futures.ProcessPoolExecutor类。
threading和multiprocessing模块:是Python中多线程和多进程并发的低层实现。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27