京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R进行多元线性回归分析建模
概念:多元回归分析预测法,是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。
下面我就举几个例子来说明一下
例一:谋杀率与哪些因素有关
变量选择
[plain] view plain copy
states<-as.data.frame(state.x77[,c('Murder','Population','Illiteracy','Income','Frost')])
cor(states)#查看变量相关系数
Murder Population Illiteracy Income Frost
Murder 1.0000000 0.3436428 0.7029752 -0.2300776 -0.5388834
Population 0.3436428 1.0000000 0.1076224 0.2082276 -0.3321525
Illiteracy 0.7029752 0.1076224 1.0000000 -0.4370752 -0.6719470
Income -0.2300776 0.2082276 -0.4370752 1.0000000 0.2262822
Frost -0.5388834 -0.3321525 -0.6719470 0.2262822 1.0000000
我们可以明显的看出谋杀率与人口,文盲率相关性较大
将它们的关系可视化
[plain] view plain copy
library(car)
scatterplotMatrix(states,spread=FALSE)

还可以这么看
[plain] view plain copy
fit<-lm(Murder~Population+Illiteracy+Income+Frost,data = states)
summary(fit)
Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost,
data = states)
Residuals:
Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.235e+00 3.866e+00 0.319 0.7510
Population 2.237e-04 9.052e-05 2.471 0.0173 *
Illiteracy 4.143e+00 8.744e-01 4.738 2.19e-05 ***
Income 6.442e-05 6.837e-04 0.094 0.9253
Frost 5.813e-04 1.005e-02 0.058 0.9541
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08
还可以这么看
[plain] view plain copy
#install.packages('leaps')
library(leaps)
leaps<-regsubsets(Murder~Population+Illiteracy+Income+Frost,data = states,nbest = 4)
plot(leaps,scale = 'adjr2')

最大值0.55是只包含人口,文盲率这两个变量和截距的。
还可以这样,比较标准回归系数的大小
[plain] view plain copy
zstates<-as.data.frame(scale(states))#scale()标准化
zfit<-lm(Murder~Population+Illiteracy+Income+Frost,data = zstates)
coef(zfit)
(Intercept) Population Illiteracy Income Frost
-2.054026e-16 2.705095e-01 6.840496e-01 1.072372e-02 8.185407e-03
通过这几种方法,我们都可以明显的看出谋杀率与人口,文盲率相关性较大,与其它因素相关性较小。
回归诊断
[plain] view plain copy
> confint(fit)
2.5 % 97.5 %
(Intercept) -6.552191e+00 9.0213182149
Population 4.136397e-05 0.0004059867
Illiteracy 2.381799e+00 5.9038743192
Income -1.312611e-03 0.0014414600
Frost -1.966781e-02 0.0208304170
标记异常值
[plain] view plain copy
qqPlot(fit,labels = row.names(states),id.method = 'identify',simulate = T)
图如下,点一下异常值然后点finish就可以了

查看它的实际值11.5与拟合值3.878958,这条数据显然是异常的,可以抛弃
[plain] view plain copy
> states['Nevada',]
Murder Population Illiteracy Income Frost
Nevada 11.5 590 0.5 5149 188
> fitted(fit)['Nevada']
Nevada
3.878958
> outlierTest(fit)#或直接这么检测离群点
rstudent unadjusted p-value Bonferonni p
Nevada 3.542929 0.00095088 0.047544
car包有多个函数,可以判断误差的独立性,线性,同方差性
[plain] view plain copy
library(car)
durbinWatsonTest(fit)
crPlots(fit)
ncvTest(fit)
spreadLevelPlot(fit)
综合检验
[plain] view plain copy
#install.packages('gvlma')
library(gvlma)
gvmodel<-gvlma(fit);summary(gvmodel)
检验多重共线性
根号下vif>2则表明有多重共线性
[plain] view plain copy
> sqrt(vif(fit))
Population Illiteracy Income Frost
1.115922 1.471682 1.160096 1.443103
都小于2所以不存在多重共线性
例二:女性身高与体重的关系
[plain] view plain copy
attach(women)
plot(height,weight)
通过图我们可以发现,用曲线拟合要比直线效果更好

那就试试呗
[plain] view plain copy
fit<-lm(weight~height+I(height^2))#含平方项
summary(fit)
Call:
lm(formula = weight ~ height + I(height^2))
Residuals:
Min 1Q Median 3Q Max
-0.50941 -0.29611 -0.00941 0.28615 0.59706
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 261.87818 25.19677 10.393 2.36e-07 ***
height -7.34832 0.77769 -9.449 6.58e-07 ***
I(height^2) 0.08306 0.00598 13.891 9.32e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3841 on 12 degrees of freedom
Multiple R-squared: 0.9995, Adjusted R-squared: 0.9994
F-statistic: 1.139e+04 on 2 and 12 DF, p-value: < 2.2e-16
效果是很不错的,可以得出模型为
把拟合曲线加上看看
[plain] view plain copy
lines(height,fitted(fit))

非常不错吧
还可以用car包的scatterplot()函数
[plain] view plain copy
library(car)
scatterplot(weight~height,spread=FALSE,pch=19)#19实心圆,spread=FALSE删除了残差正负均方根在平滑曲线上
展开的非对称信息,听着就不像人话,你可以改成TRUE看看到底是什么,我反正不明白。

例三:含交互项
[plain] view plain copy
<strong>attach(mtcars)
fit<-lm(mpg~hp+wt+hp:wt)
summary(fit)
Call:
lm(formula = mpg ~ hp + wt + hp:wt)
Residuals:
Min 1Q Median 3Q Max
-3.0632 -1.6491 -0.7362 1.4211 4.5513
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.80842 3.60516 13.816 5.01e-14 ***
hp -0.12010 0.02470 -4.863 4.04e-05 ***
wt -8.21662 1.26971 -6.471 5.20e-07 ***
hp:wt 0.02785 0.00742 3.753 0.000811 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.153 on 28 degrees of freedom
Multiple R-squared: 0.8848, Adjusted R-squared: 0.8724
F-statistic: 71.66 on 3 and 28 DF, p-value: 2.981e-13</strong>
其中的hp:wt就是交互项,表示我们假设hp马力与wt重量有相关关系,通过全部的三个星可以看出响应/因变量mpg(每加仑英里)与预测/自变量都相关,也就是说mpg(每加仑英里)与汽车马力/重量都相关,且mpg与马力的关系会根据车重的不同而不同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04