
Python进阶学习之特殊方法实例详析
最近在学习python,学习到了一个之前没接触过的--特殊方法。
什么是特殊方法?当我们在设计一个类的时候,python中有一个用于初始化的方法$__init__$,类似于java中的构造器,这个就是特殊方法,也叫作魔术方法。简单来说,特殊方法可以给你设计的类加上一些神奇的特性,比如可以进行python原生的切片操作,迭代、连乘操作等。在python中,特殊方法以双下划线开始,以双下划线结束。
一个大例子
数学中有一个表示数的概念叫做向量,但是python中的数据类型却没有。我们来设法用python实现它。
首先考虑,向量跟普通的数据类型不同,传统的数可以直接进行运算,向量则需要对不同的坐标分别运算。来试试。
首先定义一个类,实现初始化方法。
# 实现向量类型
class Vector:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
如何实现向量的加法?二维向量中,向量的加法就是每个坐标分别相加得到的结果。在python中有个$__add__$方法,用来进行加法操作。
class Vector:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
# 实现向量加法
def __add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)
我们对x和y变量分别进行相加,然后返回Vector。在python你可以对字符串直接用加法拼接起来的原理就在此,python实现了针对字符串的add方法。
实现了加法,乘法的道理一样,分别对每个坐标单独相乘即可。
class Vector:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
# 实现向量加法
def __add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)
# 实现向量乘法,例如r*3
def __mul__(self, scalar):
return Vector(self.x*scalar, self.y*scalar)
我们在进行向量运算时还有一个常用的操作是求向量的模,我们用$__abs__$特殊方法来实现,abs一般用来求一个数的绝对值,向量用不到,用来求模刚好合适。使用math模块中的hypot方法计算$\sqrt(x^2+y^2)$。
class Vector:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
# 真假值,如果向量模为0,返回false
def __bool__(self):
return bool(abs(self))
# 实现向量加法
def __add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)
# 实现向量乘法,例如r*3
def __mul__(self, scalar):
return Vector(self.x*scalar, self.y*scalar)
# 返回向量的模
# hypot()返回欧几里德范数 sqrt(x*x + y*y)
def __abs__(self):
return hypot(self.x, self.y)
找个例子运行下。
v = Vector(2, 3)
print(v)
v2 = Vector(4, 5)
print(v+v2)
print(v+v2*2)
<__main__.Vector object at 0x000002B4B1843C50>
<__main__.Vector object at 0x000002B4B1843EF0>
<__main__.Vector object at 0x000002B4B1843898>
可以运行了,貌似是正确的,但是输出的结果很奇怪。怎么办?python中有个$__repr__$特殊方法,可以修改控制台输出的样式。
class Vector:
def __init__(self, x=0, y=0):
self.x = x
self.y = y
# 真假值,如果向量模为0,返回false
def __bool__(self):
return bool(abs(self))
# 实现向量加法
def __add__(self, other):
x = self.x + other.x
y = self.y + other.y
return Vector(x, y)
# 实现向量乘法,例如r*3
def __mul__(self, scalar):
return Vector(self.x*scalar, self.y*scalar)
# 返回向量的模
# hypot()返回欧几里德范数 sqrt(x*x + y*y)
def __abs__(self):
return hypot(self.x, self.y)
# 实现__repr__方法,在控制台打印向量时会输出Vector(1, 2)
# 实现__str__,使用str()返回字符串
def __repr__(self):
return 'Vector(%r, %r)' % (self.x, self.y)
实现了$__repr__$方法,我们就可以在控制台输出Vecotor(x,y)。与之对应的有个$__str__$方法,使用str()返回相应的字符串,展示给用户。
现在来看下之前程序运行的结果。
v = Vector(2, 3)
print(v)
v2 = Vector(4, 5)
print(v+v2)
print(v+v2*2)
print(abs(v))
Vector(2, 3)
Vector(6, 8)
Vector(10, 13)
3.605551275463989
效果不错。
通过实现特殊方法,自定义类型可以表现的跟内置类型一样,让我们能够写出更具有python风格的代码。
除了上面说到的几个特殊方法外,python还有差不多80多个特殊方法,比如$__len__$方法可以用来求长度,$__getitem__$可以使用haha[2]之类的操作进行切片和迭代等,同样的还有$__setitem__$。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03