京公网安备 11010802034615号
经营许可证编号:京B2-20210330
颠覆主观对冲基金的量化工程师、AI专家和数据科学家
量化和数据分析师可能还在与主观对冲基金经理争夺主导权, 但是私下里也许传统的对冲基金经理已经知道他们时日无多了。
Leig Drogen以前是一家对冲基金的CIO,现在运营着大数据金融技术公司Estimize,他说:“曾经有管理十亿美元以上的投资经理告诉我,他们正在夜校学习数据科学课程。这些课程甚至与财务没有关系,因为他们还不存在”。
摩根士丹利(Morgan Stanley)股票资本市场银行家Emmett Kilduff补充道:“大多数自由基金经理认为Python是一条大蛇。他们从来没有听说过网络抓取或其他大数据技术。他们完全没有这样的技能能力“。
对于量化分析师和数据科学家来说,主观基金管理像是一个“宗教”:以直觉和信念为基础进行预测。但在绝大多数对冲基金和资产管理公司,他们仍然是这样操作的。
“大多数对冲基金有一个集中化的团队,专注与寻找数据,清理和纳入。然后他们雇用数据科学家和量化研究人员寻找alpha的机会,然后简单的完成一个Excel电子表格交给不知道该怎么做的投资组合经理“,Drogen在新闻周刊人工智能资本市场会议上说。
Drogen的理论是,投资组合经理,数据科学家和量化分析师应该都在“池子”中一起工作。投资组合经理了解交易策略,可以解释他对股票的理解,以及他对alpha的看法给向量化分析员和数据科学家 ,然后由他们挖掘和获取数据。这样一个工作体系给投资经理非常大的优势。
大多数基金经理还没有意识到这一点。尤其是大公司, 在这么多不同的团队中试图引入如此多的稀缺数据科学人才现在几乎是不可能的。
“现在的方式是成立一个支持传统专业知识的集中量化团队”, Kilduff说。
将基本面的知识和巨量数据集的量化融合的想法-quantamental方法 ,现在越来越引人关注。即便如此,这个方法不是简单地获取这些巨大的数据来源,而是应该如何使用这些数据并了解后面潜在的金融驱动因素。
聚焦大数据对冲基金的迈克尔·比尔说:“量化与基本面争论的真正原因是,没有人知道如何使用数据科学来获得洞察力,并将洞察力转化为行动。如何把量化和基本面的洞察力合并成一个闭环, 并把它变成钱, 这才是最难的部分。”
”尽管有大量的不同意见,许多主观对冲基金的投资组合经理知道,背景已经改变,他们正在采取行动更新他们的技能“,Drogen说, “不少有几十年经验的投资经理去参加Python和R的课程,或学习如何建立一个多因子模型”。
在对冲基金向大数据和人工智能的转变中, 也遇到现在的工作人员的阻碍。大数据公司Orbital Insight全球销售主管AJ DeRosa说:“对基本面的膜拜有很久的时间了, 而这些传统的投资人员有很强的自尊心, 所以让他们转变, 你需要同情心。但在五年的时间里,他们的工作要么成为量化分析师,要么就不再存在了”。
主观对冲基金的想法:雇用了一大批数据科学家和博士,然后把他们放在后面的仓库里去自生自灭的创造奇迹。这样的想法需要改变。 文化的转变可能需要时间慢慢来,但一旦发生了, 产生的新的基金经理可能远超他们。
比尔说:“大约有70家对冲基金表示他们使用大数据,其中大约20家真正在做,也许有少数家真正做的很棒。“
其中之一是Numerai,这是一家由29岁的南非理查德· 克拉布(Richard Craib)经营的硅谷对冲基金。它使用成千上万的自由数据科学家创建机器学习模型,然后用于进行交易。有大约13,000人互相竞争创造最好的战略 - 奖金为价值约15万美元的比特币。
“我们的一个投资者Renaissance Technologies的联合创始人霍华德·摩根(Howard Morgan)过去几年就停止了投资在量化基金上。他的逻辑是你无法与有120个博士使用各种无法想象的模型来分析数据集的Two Sigma竞争。但是我们有七八个员工和13000多名分布在世界各地的数据科学家一起建立对冲基金。我们正处于第三波,正在创造一种新型的对冲基金”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07